Table
The table widget is a powerful tool for displaying and organizing data in a tabular format. With this widget, you have the capability to present large data sets in a format that's both user-friendly and interactive.
On this page, you will learn how to create and customize table widgets. You will also learn how to format and style them.
Create Basic Table
In this example, the table widget will be employed to showcase data related to a group of companies. We will use the data to display information about 5 companies.
First, let's begin by structuring our code. Create a dedicated folder (widgets
) to house the upcoming widgets:
Add the following table code (in widgets/table.py
) and data (in data/table.json
):
widgets/table.py data/table.json
import pandas as pd
from engineai.sdk.dashboard.widgets import table
table_widget = table . Table (
data = pd . read_json (
"data/table.json" ,
orient = "records" ,
),
columns = [ "symbol" , "market_cap" , "price" , "sector" ],
)
[
{
"symbol" : "AAPL" ,
"code" : "US" ,
"last_dividend_date" : 1683849600000 ,
"market_cap" : 3068669460480 ,
"price" : 193.73 ,
"sector" : "Technology" ,
"price_10_days" : {
"values" : [
190.7 , 188.6 , 188.1 , 189.8 , 190.5 , 190.7 , 194.0 , 193.7 , 195.1 , 194.6
],
"colors" : [ 0 , -2.1 , -2.6 , -0.9 , -0.2 , 0.0 , 3.3 , 3.0 , 4.4 , 3.9 ]
}
},
{
"symbol" : "SHEL" ,
"code" : "GB" ,
"last_dividend_date" : 1699621202000 ,
"market_cap" : 212379702647 ,
"price" : 27.435 ,
"sector" : "Energy Minerals" ,
"price_10_days" : {
"values" : [ 27.7 , 27.7 , 27.6 , 27.5 , 27.5 , 27.3 , 27.2 , 27.2 , 27.1 , 27.1 ],
"colors" : [ 0 , 0.0 , -0.1 , -0.2 , -0.2 , -0.4 , -0.5 , -0.5 , -0.6 , -0.6 ]
}
},
{
"symbol" : "JPM" ,
"code" : "US" ,
"last_dividend_date" : 1688515200000 ,
"market_cap" : 448265912320 ,
"price" : 153.66 ,
"sector" : "Financial Services" ,
"price_10_days" : {
"values" : [
144.3 , 145.1 , 147.4 , 148.1 , 148.9 , 149.8 , 153.4 , 153.7 , 154.2 , 155.7
],
"colors" : [ 0 , 0.8 , 3.1 , 3.8 , 4.6 , 5.5 , 9.1 , 9.4 , 9.9 , 11.4 ]
}
},
{
"symbol" : "TCEHY" ,
"code" : "CN" ,
"last_dividend_date" : 1699621202000 ,
"market_cap" : 366822713221 ,
"price" : 690.33 ,
"sector" : "Technology" ,
"price_10_days" : {
"values" : [
706.6 , 701.5 , 698.3 , 697.8 , 689.1 , 686.8 , 683.1 , 682.6 , 678.9 , 678.5
],
"colors" : [ 0 , -5.1 , -8.3 , -8.8 , -17.5 , -19.8 , -23.5 , -24.0 , -27.7 , -28.1 ]
}
},
{
"symbol" : "JNJ" ,
"code" : "US" ,
"last_dividend_date" : 1684713600000 ,
"market_cap" : 412522414080 ,
"price" : 159.06 ,
"sector" : "Healthcare" ,
"price_10_days" : {
"values" : [
159.2 , 159.5 , 158.6 , 158.1 , 158.8 , 159.9 , 159.1 , 159.1 , 158.7 , 167.9
],
"colors" : [ 0 , 0.3 , -0.6 , -1.1 , -0.4 , 0.7 , -0.1 , -0.1 , -0.5 , 8.7 ]
}
}
]
For each company, the table widget will show the symbol
, market_cap
, price
and sector
columns attribute on the Table
class.
As you can see, there are more columns in the table.json
file than the ones displayed in the table widget. We will use the remaining columns during the tutorial.
Now, let's clear the current main.py
content and add the following code:
from engineai.sdk.dashboard import dashboard
from widgets.table import table_widget
dashboard . Dashboard (
slug = "new_dashboard" ,
app_slug = "<app-slug>" ,
workspace_slug = "<workspace-slug>" ,
content = [
table_widget ,
],
)
Full Code
widgets/table.py data/table.json main.py
import pandas as pd
from engineai.sdk.dashboard.widgets import table
table_widget = table . Table (
data = pd . read_json (
"data/table.json" ,
orient = "records" ,
),
columns = [ "symbol" , "market_cap" , "price" , "sector" ],
)
[
{
"symbol" : "AAPL" ,
"code" : "US" ,
"last_dividend_date" : 1683849600000 ,
"market_cap" : 3068669460480 ,
"price" : 193.73 ,
"sector" : "Technology" ,
"price_10_days" : {
"values" : [
190.7 , 188.6 , 188.1 , 189.8 , 190.5 , 190.7 , 194.0 , 193.7 , 195.1 , 194.6
],
"colors" : [ 0 , -2.1 , -2.6 , -0.9 , -0.2 , 0.0 , 3.3 , 3.0 , 4.4 , 3.9 ]
}
},
{
"symbol" : "SHEL" ,
"code" : "GB" ,
"last_dividend_date" : 1699621202000 ,
"market_cap" : 212379702647 ,
"price" : 27.435 ,
"sector" : "Energy Minerals" ,
"price_10_days" : {
"values" : [ 27.7 , 27.7 , 27.6 , 27.5 , 27.5 , 27.3 , 27.2 , 27.2 , 27.1 , 27.1 ],
"colors" : [ 0 , 0.0 , -0.1 , -0.2 , -0.2 , -0.4 , -0.5 , -0.5 , -0.6 , -0.6 ]
}
},
{
"symbol" : "JPM" ,
"code" : "US" ,
"last_dividend_date" : 1688515200000 ,
"market_cap" : 448265912320 ,
"price" : 153.66 ,
"sector" : "Financial Services" ,
"price_10_days" : {
"values" : [
144.3 , 145.1 , 147.4 , 148.1 , 148.9 , 149.8 , 153.4 , 153.7 , 154.2 , 155.7
],
"colors" : [ 0 , 0.8 , 3.1 , 3.8 , 4.6 , 5.5 , 9.1 , 9.4 , 9.9 , 11.4 ]
}
},
{
"symbol" : "TCEHY" ,
"code" : "CN" ,
"last_dividend_date" : 1699621202000 ,
"market_cap" : 366822713221 ,
"price" : 690.33 ,
"sector" : "Technology" ,
"price_10_days" : {
"values" : [
706.6 , 701.5 , 698.3 , 697.8 , 689.1 , 686.8 , 683.1 , 682.6 , 678.9 , 678.5
],
"colors" : [ 0 , -5.1 , -8.3 , -8.8 , -17.5 , -19.8 , -23.5 , -24.0 , -27.7 , -28.1 ]
}
},
{
"symbol" : "JNJ" ,
"code" : "US" ,
"last_dividend_date" : 1684713600000 ,
"market_cap" : 412522414080 ,
"price" : 159.06 ,
"sector" : "Healthcare" ,
"price_10_days" : {
"values" : [
159.2 , 159.5 , 158.6 , 158.1 , 158.8 , 159.9 , 159.1 , 159.1 , 158.7 , 167.9
],
"colors" : [ 0 , 0.3 , -0.6 , -1.1 , -0.4 , 0.7 , -0.1 , -0.1 , -0.5 , 8.7 ]
}
}
]
from engineai.sdk.dashboard import dashboard
from widgets.table import table_widget
dashboard . Dashboard (
slug = "new_dashboard" ,
app_slug = "<app-slug>" ,
workspace_slug = "<workspace-slug>" ,
content = [
table_widget ,
],
)
If you publish the dashboard, you'll see the table widget displaying the data for the
companies:
engineai dashboard publish
Result
The following section will guide you through the process of table customization, allowing you to modify widget styles and formatting to match your preferences.
If you have a large dataset, you can enable pagination for the table widget. This feature allows you to display a limited number of rows per page, making it easier to navigate through the data. To enable pagination, set the rows_per_page
parameter in the Table class.
The final code for the table.py
file should look like this:
import pandas as pd
from engineai.sdk.dashboard.widgets import table
table_widget = table . Table (
data = pd . read_json (
"data/table.json" ,
orient = "records" ,
),
rows_per_page = 3 ,
columns = [ "symbol" , "market_cap" , "price" , "sector" ],
)
Full Code
widgets/table.py data/table.json main.py
import pandas as pd
from engineai.sdk.dashboard.widgets import table
table_widget = table . Table (
data = pd . read_json (
"data/table.json" ,
orient = "records" ,
),
rows_per_page = 3 ,
columns = [ "symbol" , "market_cap" , "price" , "sector" ],
)
[
{
"symbol" : "AAPL" ,
"code" : "US" ,
"last_dividend_date" : 1683849600000 ,
"market_cap" : 3068669460480 ,
"price" : 193.73 ,
"sector" : "Technology" ,
"price_10_days" : {
"values" : [
190.7 , 188.6 , 188.1 , 189.8 , 190.5 , 190.7 , 194.0 , 193.7 , 195.1 , 194.6
],
"colors" : [ 0 , -2.1 , -2.6 , -0.9 , -0.2 , 0.0 , 3.3 , 3.0 , 4.4 , 3.9 ]
}
},
{
"symbol" : "SHEL" ,
"code" : "GB" ,
"last_dividend_date" : 1699621202000 ,
"market_cap" : 212379702647 ,
"price" : 27.435 ,
"sector" : "Energy Minerals" ,
"price_10_days" : {
"values" : [ 27.7 , 27.7 , 27.6 , 27.5 , 27.5 , 27.3 , 27.2 , 27.2 , 27.1 , 27.1 ],
"colors" : [ 0 , 0.0 , -0.1 , -0.2 , -0.2 , -0.4 , -0.5 , -0.5 , -0.6 , -0.6 ]
}
},
{
"symbol" : "JPM" ,
"code" : "US" ,
"last_dividend_date" : 1688515200000 ,
"market_cap" : 448265912320 ,
"price" : 153.66 ,
"sector" : "Financial Services" ,
"price_10_days" : {
"values" : [
144.3 , 145.1 , 147.4 , 148.1 , 148.9 , 149.8 , 153.4 , 153.7 , 154.2 , 155.7
],
"colors" : [ 0 , 0.8 , 3.1 , 3.8 , 4.6 , 5.5 , 9.1 , 9.4 , 9.9 , 11.4 ]
}
},
{
"symbol" : "TCEHY" ,
"code" : "CN" ,
"last_dividend_date" : 1699621202000 ,
"market_cap" : 366822713221 ,
"price" : 690.33 ,
"sector" : "Technology" ,
"price_10_days" : {
"values" : [
706.6 , 701.5 , 698.3 , 697.8 , 689.1 , 686.8 , 683.1 , 682.6 , 678.9 , 678.5
],
"colors" : [ 0 , -5.1 , -8.3 , -8.8 , -17.5 , -19.8 , -23.5 , -24.0 , -27.7 , -28.1 ]
}
},
{
"symbol" : "JNJ" ,
"code" : "US" ,
"last_dividend_date" : 1684713600000 ,
"market_cap" : 412522414080 ,
"price" : 159.06 ,
"sector" : "Healthcare" ,
"price_10_days" : {
"values" : [
159.2 , 159.5 , 158.6 , 158.1 , 158.8 , 159.9 , 159.1 , 159.1 , 158.7 , 167.9
],
"colors" : [ 0 , 0.3 , -0.6 , -1.1 , -0.4 , 0.7 , -0.1 , -0.1 , -0.5 , 8.7 ]
}
}
]
from engineai.sdk.dashboard import dashboard
from widgets.table import table_widget
dashboard . Dashboard (
slug = "new_dashboard" ,
app_slug = "<app-slug>" ,
workspace_slug = "<workspace-slug>" ,
content = [
table_widget ,
],
)
You can publish and see the result:
engineai dashboard publish
Result
Customizing Table Columns
You can change the column type in the table widget to showcase data in a new format.
There are different column types:
In the section we will use the following table columns:
DatetimeColumn
to show last_dividend_date
column.
TextColumn
to show the symbol
and sector
columns.
NumberColumn
to show the market_cap
and price
columns.
LineChartColumn
to visualize the price
(price_10_days
) of the selected company over a 10-day period.
TableHeader
that will group the market_cap
, price
, sector
and price_10_days
columns.
The final code for the table.py
file should look like this:
import pandas as pd
from engineai.sdk.dashboard.widgets import table
table_widget = table . Table (
data = pd . read_json (
"data/table.json" ,
orient = "records" ,
),
rows_per_page = 3 ,
columns = [
table . DatetimeColumn (
data_column = "last_dividend_date" ,
),
table . TextColumn (
data_column = "symbol" ,
),
table . Header (
label = "Information" ,
columns = [
table . NumberColumn ( data_column = "market_cap" ),
table . NumberColumn (
data_column = "price" ,
),
table . TextColumn ( data_column = "sector" ),
table . LineChartColumn (
data_column = "price_10_days" ,
data_key = "values" ,
),
],
),
],
)
Full Code
widgets/table.py data/table.json main.py
import pandas as pd
from engineai.sdk.dashboard.widgets import table
table_widget = table . Table (
data = pd . read_json (
"data/table.json" ,
orient = "records" ,
),
rows_per_page = 3 ,
columns = [
table . DatetimeColumn (
data_column = "last_dividend_date" ,
),
table . TextColumn (
data_column = "symbol" ,
),
table . Header (
label = "Information" ,
columns = [
table . NumberColumn ( data_column = "market_cap" ),
table . NumberColumn (
data_column = "price" ,
),
table . TextColumn ( data_column = "sector" ),
table . LineChartColumn (
data_column = "price_10_days" ,
data_key = "values" ,
),
],
),
],
)
[
{
"symbol" : "AAPL" ,
"code" : "US" ,
"last_dividend_date" : 1683849600000 ,
"market_cap" : 3068669460480 ,
"price" : 193.73 ,
"sector" : "Technology" ,
"price_10_days" : {
"values" : [
190.7 , 188.6 , 188.1 , 189.8 , 190.5 , 190.7 , 194.0 , 193.7 , 195.1 , 194.6
],
"colors" : [ 0 , -2.1 , -2.6 , -0.9 , -0.2 , 0.0 , 3.3 , 3.0 , 4.4 , 3.9 ]
}
},
{
"symbol" : "SHEL" ,
"code" : "GB" ,
"last_dividend_date" : 1699621202000 ,
"market_cap" : 212379702647 ,
"price" : 27.435 ,
"sector" : "Energy Minerals" ,
"price_10_days" : {
"values" : [ 27.7 , 27.7 , 27.6 , 27.5 , 27.5 , 27.3 , 27.2 , 27.2 , 27.1 , 27.1 ],
"colors" : [ 0 , 0.0 , -0.1 , -0.2 , -0.2 , -0.4 , -0.5 , -0.5 , -0.6 , -0.6 ]
}
},
{
"symbol" : "JPM" ,
"code" : "US" ,
"last_dividend_date" : 1688515200000 ,
"market_cap" : 448265912320 ,
"price" : 153.66 ,
"sector" : "Financial Services" ,
"price_10_days" : {
"values" : [
144.3 , 145.1 , 147.4 , 148.1 , 148.9 , 149.8 , 153.4 , 153.7 , 154.2 , 155.7
],
"colors" : [ 0 , 0.8 , 3.1 , 3.8 , 4.6 , 5.5 , 9.1 , 9.4 , 9.9 , 11.4 ]
}
},
{
"symbol" : "TCEHY" ,
"code" : "CN" ,
"last_dividend_date" : 1699621202000 ,
"market_cap" : 366822713221 ,
"price" : 690.33 ,
"sector" : "Technology" ,
"price_10_days" : {
"values" : [
706.6 , 701.5 , 698.3 , 697.8 , 689.1 , 686.8 , 683.1 , 682.6 , 678.9 , 678.5
],
"colors" : [ 0 , -5.1 , -8.3 , -8.8 , -17.5 , -19.8 , -23.5 , -24.0 , -27.7 , -28.1 ]
}
},
{
"symbol" : "JNJ" ,
"code" : "US" ,
"last_dividend_date" : 1684713600000 ,
"market_cap" : 412522414080 ,
"price" : 159.06 ,
"sector" : "Healthcare" ,
"price_10_days" : {
"values" : [
159.2 , 159.5 , 158.6 , 158.1 , 158.8 , 159.9 , 159.1 , 159.1 , 158.7 , 167.9
],
"colors" : [ 0 , 0.3 , -0.6 , -1.1 , -0.4 , 0.7 , -0.1 , -0.1 , -0.5 , 8.7 ]
}
}
]
from engineai.sdk.dashboard import dashboard
from widgets.table import table_widget
dashboard . Dashboard (
slug = "new_dashboard" ,
app_slug = "<app-slug>" ,
workspace_slug = "<workspace-slug>" ,
content = [
table_widget ,
],
)
You're all set to publish the Dashboard, and upon doing so, you should see the changes
reflected in the table.
engineai dashboard publish
Result
More information
When working with table columns that display charts, make sure that the data takes the form of dictionaries within the main
DataFrame. This structure is essential for proper visualization because in the chart columns the scope of the data is not the Dataframe itself, but the dictionary within the Dataframe.
As you can see in the example below, the LineChartColumn
class has the data_column
argument to define the data scope. In this case price_10_days
is the data scope. Then, we have to define a data_key
argument, that corresponds to where we find the actual values inside the scope. In this example, we find the values inside the values
key.
The data snippet shows the structure of the price_10_days
column. The data is a dictionary with the price_10_days
key containing the values
key, that contains the values.
Code Data
table . LineChartColumn (
data_column = "price_10_days" ,
data_key = "values" ,
),
[
{
...
"price_10_days" : {
"values" : [
190.7 , 188.6 , 188.1 , 189.8 , 190.5 , 190.7 , 194.0 , 193.7 , 195.1 , 194.6
],
...
}
}
]
In the next section, you will learn how to customize your widgets by changing their style
and formatting.
Now, let's explore the process of adjusting formatting within the table widget.
There are several formatting options available:
First, add DateTimeFormatting
class to formatting argument in the DatetimeColumn
class, that displays last_dividend_date
column. We will use it to set a specific date format (DD/MM/YYYY HH:MM).
Second, add NumberFormatting
class to formatting argument in the NumberColumn
class, that displays price
column. We will use it to set a higher number of decimal places and include a dollar sign ($)
.
import pandas as pd
from engineai.sdk.dashboard import formatting
from engineai.sdk.dashboard.widgets import table
table_widget = table . Table (
data = pd . read_json (
"data/table.json" ,
orient = "records" ,
),
rows_per_page = 3 ,
columns = [
table . DatetimeColumn (
data_column = "last_dividend_date" ,
formatting = formatting . DateTimeFormatting (
time_unit = formatting . DateTimeUnit . DATETIME
),
),
table . TextColumn (
data_column = "symbol" ,
),
table . Header (
label = "Information" ,
columns = [
table . NumberColumn ( data_column = "market_cap" ),
table . NumberColumn (
data_column = "price" ,
formatting = formatting . NumberFormatting ( prefix = "$" , decimals = 2 ),
),
table . TextColumn ( data_column = "sector" ),
table . LineChartColumn (
data_column = "price_10_days" ,
data_key = "values" ,
),
],
),
],
)
Full Code
widgets/table.py data/table.json main.py
import pandas as pd
from engineai.sdk.dashboard import formatting
from engineai.sdk.dashboard.widgets import table
table_widget = table . Table (
data = pd . read_json (
"data/table.json" ,
orient = "records" ,
),
rows_per_page = 3 ,
columns = [
table . DatetimeColumn (
data_column = "last_dividend_date" ,
formatting = formatting . DateTimeFormatting (
time_unit = formatting . DateTimeUnit . DATETIME
),
),
table . TextColumn (
data_column = "symbol" ,
),
table . Header (
label = "Information" ,
columns = [
table . NumberColumn ( data_column = "market_cap" ),
table . NumberColumn (
data_column = "price" ,
formatting = formatting . NumberFormatting ( prefix = "$" , decimals = 2 ),
),
table . TextColumn ( data_column = "sector" ),
table . LineChartColumn (
data_column = "price_10_days" ,
data_key = "values" ,
),
],
),
],
)
[
{
"symbol" : "AAPL" ,
"code" : "US" ,
"last_dividend_date" : 1683849600000 ,
"market_cap" : 3068669460480 ,
"price" : 193.73 ,
"sector" : "Technology" ,
"price_10_days" : {
"values" : [
190.7 , 188.6 , 188.1 , 189.8 , 190.5 , 190.7 , 194.0 , 193.7 , 195.1 , 194.6
],
"colors" : [ 0 , -2.1 , -2.6 , -0.9 , -0.2 , 0.0 , 3.3 , 3.0 , 4.4 , 3.9 ]
}
},
{
"symbol" : "SHEL" ,
"code" : "GB" ,
"last_dividend_date" : 1699621202000 ,
"market_cap" : 212379702647 ,
"price" : 27.435 ,
"sector" : "Energy Minerals" ,
"price_10_days" : {
"values" : [ 27.7 , 27.7 , 27.6 , 27.5 , 27.5 , 27.3 , 27.2 , 27.2 , 27.1 , 27.1 ],
"colors" : [ 0 , 0.0 , -0.1 , -0.2 , -0.2 , -0.4 , -0.5 , -0.5 , -0.6 , -0.6 ]
}
},
{
"symbol" : "JPM" ,
"code" : "US" ,
"last_dividend_date" : 1688515200000 ,
"market_cap" : 448265912320 ,
"price" : 153.66 ,
"sector" : "Financial Services" ,
"price_10_days" : {
"values" : [
144.3 , 145.1 , 147.4 , 148.1 , 148.9 , 149.8 , 153.4 , 153.7 , 154.2 , 155.7
],
"colors" : [ 0 , 0.8 , 3.1 , 3.8 , 4.6 , 5.5 , 9.1 , 9.4 , 9.9 , 11.4 ]
}
},
{
"symbol" : "TCEHY" ,
"code" : "CN" ,
"last_dividend_date" : 1699621202000 ,
"market_cap" : 366822713221 ,
"price" : 690.33 ,
"sector" : "Technology" ,
"price_10_days" : {
"values" : [
706.6 , 701.5 , 698.3 , 697.8 , 689.1 , 686.8 , 683.1 , 682.6 , 678.9 , 678.5
],
"colors" : [ 0 , -5.1 , -8.3 , -8.8 , -17.5 , -19.8 , -23.5 , -24.0 , -27.7 , -28.1 ]
}
},
{
"symbol" : "JNJ" ,
"code" : "US" ,
"last_dividend_date" : 1684713600000 ,
"market_cap" : 412522414080 ,
"price" : 159.06 ,
"sector" : "Healthcare" ,
"price_10_days" : {
"values" : [
159.2 , 159.5 , 158.6 , 158.1 , 158.8 , 159.9 , 159.1 , 159.1 , 158.7 , 167.9
],
"colors" : [ 0 , 0.3 , -0.6 , -1.1 , -0.4 , 0.7 , -0.1 , -0.1 , -0.5 , 8.7 ]
}
}
]
from engineai.sdk.dashboard import dashboard
from widgets.table import table_widget
dashboard . Dashboard (
slug = "new_dashboard" ,
app_slug = "<app-slug>" ,
workspace_slug = "<workspace-slug>" ,
content = [
table_widget ,
],
)
At this point, you can publish the Dashboard and see the new changes
reflected in the table widget.
engineai dashboard publish
Result
Styling Table Columns
Most of the widget components come with their dedicated styling classes, and the
available styling options can vary based on the specific component.
For example, for a table:
You can add a country flag, cell, dot or icon to a TextColumn
class.
Implement a dynamic color palette that adjusts based on data values.
First, add a country flag to the symbol
on the TextColumn
class.
Second, adopt a color palette that dynamically corresponds to the data values on the colors
key of the price_10_days
column, now the line color will dynamically adjust based on the data value:
Red for negative values
Grey for zero
Blue for positive values
The final code for the table.py
file should look like this:
import pandas as pd
from engineai.sdk.dashboard import formatting
from engineai.sdk.dashboard.styling import color
from engineai.sdk.dashboard.widgets import table
table_widget = table . Table (
data = pd . read_json (
"data/table.json" ,
orient = "records" ,
),
rows_per_page = 3 ,
columns = [
table . DatetimeColumn (
data_column = "last_dividend_date" ,
formatting = formatting . DateTimeFormatting (
time_unit = formatting . DateTimeUnit . DATETIME
),
),
table . TextColumn (
data_column = "symbol" , styling = table . CountryFlagStyling ( data_column = "code" )
),
table . Header (
label = "Information" ,
columns = [
table . NumberColumn ( data_column = "market_cap" ),
table . NumberColumn (
data_column = "price" ,
formatting = formatting . NumberFormatting ( prefix = "$" , decimals = 2 ),
),
table . TextColumn ( data_column = "sector" ),
table . LineChartColumn (
data_column = "price_10_days" ,
data_key = "values" ,
styling = table . LineChartStyling (
data_key = "colors" ,
color_spec = color . DiscreteMap (
color . DiscreteMapIntervalItem (
color = color . Palette . RUBI_RED ,
min_value =- 100 ,
max_value = 0 ,
exclude_max = True ,
),
color . DiscreteMapValueItem (
value = 0 , color = color . Palette . COCONUT_GREY
),
color . DiscreteMapIntervalItem (
color = color . Palette . OCEAN_BLUE ,
min_value = 0 ,
max_value = 100 ,
exclude_min = True ,
),
),
),
),
],
),
],
)
Full Code
widgets/table.py data/table.json main.py
import pandas as pd
from engineai.sdk.dashboard import formatting
from engineai.sdk.dashboard.styling import color
from engineai.sdk.dashboard.widgets import table
table_widget = table . Table (
data = pd . read_json (
"data/table.json" ,
orient = "records" ,
),
rows_per_page = 3 ,
columns = [
table . DatetimeColumn (
data_column = "last_dividend_date" ,
formatting = formatting . DateTimeFormatting (
time_unit = formatting . DateTimeUnit . DATETIME
),
),
table . TextColumn (
data_column = "symbol" , styling = table . CountryFlagStyling ( data_column = "code" )
),
table . Header (
label = "Information" ,
columns = [
table . NumberColumn ( data_column = "market_cap" ),
table . NumberColumn (
data_column = "price" ,
formatting = formatting . NumberFormatting ( prefix = "$" , decimals = 2 ),
),
table . TextColumn ( data_column = "sector" ),
table . LineChartColumn (
data_column = "price_10_days" ,
data_key = "values" ,
styling = table . LineChartStyling (
data_key = "colors" ,
color_spec = color . DiscreteMap (
color . DiscreteMapIntervalItem (
color = color . Palette . RUBI_RED ,
min_value =- 100 ,
max_value = 0 ,
exclude_max = True ,
),
color . DiscreteMapValueItem (
value = 0 , color = color . Palette . COCONUT_GREY
),
color . DiscreteMapIntervalItem (
color = color . Palette . OCEAN_BLUE ,
min_value = 0 ,
max_value = 100 ,
exclude_min = True ,
),
),
),
),
],
),
],
)
[
{
"symbol" : "AAPL" ,
"code" : "US" ,
"last_dividend_date" : 1683849600000 ,
"market_cap" : 3068669460480 ,
"price" : 193.73 ,
"sector" : "Technology" ,
"price_10_days" : {
"values" : [
190.7 , 188.6 , 188.1 , 189.8 , 190.5 , 190.7 , 194.0 , 193.7 , 195.1 , 194.6
],
"colors" : [ 0 , -2.1 , -2.6 , -0.9 , -0.2 , 0.0 , 3.3 , 3.0 , 4.4 , 3.9 ]
}
},
{
"symbol" : "SHEL" ,
"code" : "GB" ,
"last_dividend_date" : 1699621202000 ,
"market_cap" : 212379702647 ,
"price" : 27.435 ,
"sector" : "Energy Minerals" ,
"price_10_days" : {
"values" : [ 27.7 , 27.7 , 27.6 , 27.5 , 27.5 , 27.3 , 27.2 , 27.2 , 27.1 , 27.1 ],
"colors" : [ 0 , 0.0 , -0.1 , -0.2 , -0.2 , -0.4 , -0.5 , -0.5 , -0.6 , -0.6 ]
}
},
{
"symbol" : "JPM" ,
"code" : "US" ,
"last_dividend_date" : 1688515200000 ,
"market_cap" : 448265912320 ,
"price" : 153.66 ,
"sector" : "Financial Services" ,
"price_10_days" : {
"values" : [
144.3 , 145.1 , 147.4 , 148.1 , 148.9 , 149.8 , 153.4 , 153.7 , 154.2 , 155.7
],
"colors" : [ 0 , 0.8 , 3.1 , 3.8 , 4.6 , 5.5 , 9.1 , 9.4 , 9.9 , 11.4 ]
}
},
{
"symbol" : "TCEHY" ,
"code" : "CN" ,
"last_dividend_date" : 1699621202000 ,
"market_cap" : 366822713221 ,
"price" : 690.33 ,
"sector" : "Technology" ,
"price_10_days" : {
"values" : [
706.6 , 701.5 , 698.3 , 697.8 , 689.1 , 686.8 , 683.1 , 682.6 , 678.9 , 678.5
],
"colors" : [ 0 , -5.1 , -8.3 , -8.8 , -17.5 , -19.8 , -23.5 , -24.0 , -27.7 , -28.1 ]
}
},
{
"symbol" : "JNJ" ,
"code" : "US" ,
"last_dividend_date" : 1684713600000 ,
"market_cap" : 412522414080 ,
"price" : 159.06 ,
"sector" : "Healthcare" ,
"price_10_days" : {
"values" : [
159.2 , 159.5 , 158.6 , 158.1 , 158.8 , 159.9 , 159.1 , 159.1 , 158.7 , 167.9
],
"colors" : [ 0 , 0.3 , -0.6 , -1.1 , -0.4 , 0.7 , -0.1 , -0.1 , -0.5 , 8.7 ]
}
}
]
from engineai.sdk.dashboard import dashboard
from widgets.table import table_widget
dashboard . Dashboard (
slug = "new_dashboard" ,
app_slug = "<app-slug>" ,
workspace_slug = "<workspace-slug>" ,
content = [
table_widget ,
],
)
If you publish the dashboard now, you'll notice the color modifications in price_10_days
columns and the country flag in symbol
column.
engineai dashboard publish
Result
Next Steps
In the next section, we’ll introduce the timeseries widget, and how to format, customize, and style it.