Skip to content

Timeseries#

The timeseries widget is designed to plot numerical data points within a 2D coordinate system, with time as a fundamental dimension. This enables analysis of trends and patterns, facilitates straightforward comparisons, and generates insights.

Beyond its fundamental capabilities, the timeseries widget offers additional features that warrant exploration.

In this page, you will learn more about the timeseries widget and its features, such as legends, tooltips, navigation toolbars, and more.

Create Timeseries Widget#

Let's delve into these aspects, but first, let's begin by creating a basic timeseries widget.

Create a new file named timeseries.py within the widgets directory.

Next, add the following code to create the timeseries and its data (in data/timeseries.json):

1
2
3
4
5
6
import pandas as pd
from engineai.sdk.dashboard.widgets import timeseries

timeseries_widget = timeseries.Timeseries(
    date_column="date", data=pd.read_json("data/timeseries.json")
)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
[
  {
    "date": 1556668800000,
    "open": 52.47,
    "high": 53.83,
    "low": 43.75,
    "close": 43.77,
    "volume": 2957826400
  },
  {
    "date": 1559347200000,
    "open": 43.9,
    "high": 50.39,
    "low": 42.57,
    "close": 49.48,
    "volume": 2060874800
  },
  {
    "date": 1561939200000,
    "open": 50.79,
    "high": 55.34,
    "low": 49.6,
    "close": 53.26,
    "volume": 1895406800
  },
  {
    "date": 1564617600000,
    "open": 53.47,
    "high": 54.51,
    "low": 48.14,
    "close": 52.19,
    "volume": 2724326400
  },
  {
    "date": 1567296000000,
    "open": 51.61,
    "high": 56.6,
    "low": 51.06,
    "close": 55.99,
    "volume": 2170268400
  },
  {
    "date": 1569888000000,
    "open": 56.27,
    "high": 62.44,
    "low": 53.78,
    "close": 62.19,
    "volume": 2433210800
  },
  {
    "date": 1572566400000,
    "open": 62.38,
    "high": 67.0,
    "low": 62.29,
    "close": 66.81,
    "volume": 1793326000
  },
  {
    "date": 1575158400000,
    "open": 66.82,
    "high": 73.49,
    "low": 64.07,
    "close": 73.41,
    "volume": 2388794800
  },
  {
    "date": 1577836800000,
    "open": 74.06,
    "high": 81.96,
    "low": 73.19,
    "close": 77.38,
    "volume": 2934370400
  },
  {
    "date": 1580515200000,
    "open": 76.07,
    "high": 81.81,
    "low": 64.09,
    "close": 68.34,
    "volume": 3019279200
  },
  {
    "date": 1583020800000,
    "open": 70.57,
    "high": 76.0,
    "low": 53.15,
    "close": 63.57,
    "volume": 6280072400
  },
  {
    "date": 1585699200000,
    "open": 61.62,
    "high": 73.63,
    "low": 59.22,
    "close": 73.45,
    "volume": 3265299200
  },
  {
    "date": 1588291200000,
    "open": 71.56,
    "high": 81.06,
    "low": 71.46,
    "close": 79.49,
    "volume": 2805936000
  },
  {
    "date": 1590969600000,
    "open": 79.44,
    "high": 93.1,
    "low": 79.3,
    "close": 91.2,
    "volume": 3243375600
  },
  {
    "date": 1593561600000,
    "open": 91.28,
    "high": 106.42,
    "low": 89.14,
    "close": 106.26,
    "volume": 3020283200
  },
  {
    "date": 1596240000000,
    "open": 108.2,
    "high": 131.0,
    "low": 107.89,
    "close": 129.04,
    "volume": 4070061100
  },
  {
    "date": 1598918400000,
    "open": 132.76,
    "high": 137.98,
    "low": 103.1,
    "close": 115.81,
    "volume": 3885245100
  },
  {
    "date": 1601510400000,
    "open": 117.64,
    "high": 125.39,
    "low": 107.72,
    "close": 108.86,
    "volume": 2894666500
  },
  {
    "date": 1604188800000,
    "open": 109.11,
    "high": 121.99,
    "low": 107.32,
    "close": 119.05,
    "volume": 2123077300
  },
  {
    "date": 1606780800000,
    "open": 121.01,
    "high": 138.79,
    "low": 120.01,
    "close": 132.69,
    "volume": 2322189600
  },
  {
    "date": 1609459200000,
    "open": 133.52,
    "high": 145.09,
    "low": 126.38,
    "close": 131.96,
    "volume": 2240262000
  },
  {
    "date": 1612137600000,
    "open": 133.75,
    "high": 137.88,
    "low": 118.39,
    "close": 121.26,
    "volume": 1833855600
  },
  {
    "date": 1614556800000,
    "open": 123.75,
    "high": 128.72,
    "low": 116.21,
    "close": 122.15,
    "volume": 2650418200
  },
  {
    "date": 1617235200000,
    "open": 123.66,
    "high": 137.07,
    "low": 122.49,
    "close": 131.46,
    "volume": 1889857500
  },
  {
    "date": 1619827200000,
    "open": 132.04,
    "high": 134.07,
    "low": 122.25,
    "close": 124.61,
    "volume": 1711934900
  },
  {
    "date": 1622505600000,
    "open": 125.08,
    "high": 137.41,
    "low": 123.13,
    "close": 136.96,
    "volume": 1606590000
  },
  {
    "date": 1625097600000,
    "open": 136.6,
    "high": 150.0,
    "low": 135.76,
    "close": 145.86,
    "volume": 1919035100
  },
  {
    "date": 1627776000000,
    "open": 146.36,
    "high": 153.49,
    "low": 144.5,
    "close": 151.83,
    "volume": 1461542800
  },
  {
    "date": 1630454400000,
    "open": 152.83,
    "high": 157.26,
    "low": 141.27,
    "close": 141.5,
    "volume": 1797835100
  },
  {
    "date": 1633046400000,
    "open": 141.9,
    "high": 153.17,
    "low": 138.27,
    "close": 149.8,
    "volume": 1565079200
  },
  {
    "date": 1635724800000,
    "open": 148.99,
    "high": 165.7,
    "low": 147.48,
    "close": 165.3,
    "volume": 1691029000
  },
  {
    "date": 1638316800000,
    "open": 167.48,
    "high": 182.13,
    "low": 157.8,
    "close": 177.57,
    "volume": 2444766700
  },
  {
    "date": 1640995200000,
    "open": 177.83,
    "high": 182.94,
    "low": 154.7,
    "close": 174.78,
    "volume": 2108446000
  },
  {
    "date": 1643673600000,
    "open": 174.01,
    "high": 176.65,
    "low": 152.0,
    "close": 165.12,
    "volume": 1627516300
  },
  {
    "date": 1646092800000,
    "open": 164.7,
    "high": 179.61,
    "low": 150.1,
    "close": 174.61,
    "volume": 2180800100
  },
  {
    "date": 1648771200000,
    "open": 174.03,
    "high": 178.49,
    "low": 155.38,
    "close": 157.65,
    "volume": 1687795600
  },
  {
    "date": 1651363200000,
    "open": 156.71,
    "high": 166.48,
    "low": 132.61,
    "close": 148.84,
    "volume": 2401040300
  },
  {
    "date": 1654041600000,
    "open": 149.9,
    "high": 151.74,
    "low": 129.04,
    "close": 136.72,
    "volume": 1749099800
  },
  {
    "date": 1656633600000,
    "open": 136.04,
    "high": 163.63,
    "low": 135.66,
    "close": 162.51,
    "volume": 1447125400
  },
  {
    "date": 1659312000000,
    "open": 161.01,
    "high": 176.15,
    "low": 157.14,
    "close": 157.22,
    "volume": 1510239600
  },
  {
    "date": 1661990400000,
    "open": 156.64,
    "high": 164.26,
    "low": 138.0,
    "close": 138.2,
    "volume": 2084722800
  },
  {
    "date": 1664582400000,
    "open": 138.21,
    "high": 157.5,
    "low": 134.37,
    "close": 153.34,
    "volume": 1868139700
  },
  {
    "date": 1667260800000,
    "open": 155.08,
    "high": 155.45,
    "low": 134.38,
    "close": 148.03,
    "volume": 1724847700
  },
  {
    "date": 1669852800000,
    "open": 148.21,
    "high": 150.92,
    "low": 125.87,
    "close": 129.93,
    "volume": 1675731200
  },
  {
    "date": 1672531200000,
    "open": 130.28,
    "high": 147.23,
    "low": 124.17,
    "close": 144.29,
    "volume": 1443652500
  },
  {
    "date": 1675209600000,
    "open": 143.97,
    "high": 157.38,
    "low": 141.32,
    "close": 147.41,
    "volume": 1307198900
  },
  {
    "date": 1677628800000,
    "open": 146.83,
    "high": 165.0,
    "low": 143.9,
    "close": 164.9,
    "volume": 1520266600
  },
  {
    "date": 1680307200000,
    "open": 164.27,
    "high": 169.85,
    "low": 159.78,
    "close": 169.68,
    "volume": 969709700
  },
  {
    "date": 1682899200000,
    "open": 169.28,
    "high": 179.35,
    "low": 164.31,
    "close": 177.25,
    "volume": 1275155500
  },
  {
    "date": 1685577600000,
    "open": 177.7,
    "high": 194.48,
    "low": 176.93,
    "close": 193.97,
    "volume": 1297101100
  },
  {
    "date": 1688169600000,
    "open": 193.78,
    "high": 198.23,
    "low": 186.6,
    "close": 196.45,
    "volume": 996066400
  },
  {
    "date": 1690848000000,
    "open": 196.24,
    "high": 196.73,
    "low": 171.96,
    "close": 187.87,
    "volume": 1322439400
  },
  {
    "date": 1693526400000,
    "open": 189.49,
    "high": 189.98,
    "low": 167.62,
    "close": 171.21,
    "volume": 1337586600
  },
  {
    "date": 1696118400000,
    "open": 171.22,
    "high": 182.34,
    "low": 165.67,
    "close": 170.77,
    "volume": 1172719600
  },
  {
    "date": 1698796800000,
    "open": 171.0,
    "high": 192.93,
    "low": 170.12,
    "close": 189.95,
    "volume": 1099586100
  },
  {
    "date": 1701388800000,
    "open": 190.33,
    "high": 199.62,
    "low": 187.45,
    "close": 192.53,
    "volume": 1062774800
  },
  {
    "date": 1704067200000,
    "open": 187.15,
    "high": 196.38,
    "low": 180.17,
    "close": 184.4,
    "volume": 1187219300
  },
  {
    "date": 1706745600000,
    "open": 183.99,
    "high": 191.05,
    "low": 179.25,
    "close": 180.75,
    "volume": 1161627000
  },
  {
    "date": 1709251200000,
    "open": 179.55,
    "high": 180.53,
    "low": 168.49,
    "close": 171.48,
    "volume": 1432782800
  },
  {
    "date": 1711929600000,
    "open": 171.19,
    "high": 171.25,
    "low": 168.23,
    "close": 168.84,
    "volume": 95498800
  },
  {
    "date": 1712016000000,
    "open": 169.06,
    "high": 169.34,
    "low": 168.23,
    "close": 168.84,
    "volume": 47248438
  }
]

You'll need to add the timeseries_widget to your Dashboard class (in the main.py file):

from engineai.sdk.dashboard import dashboard
from widgets.table import table_widget
from widgets.timeseries import timeseries_widget

dashboard.Dashboard(
    slug="new_dashboard",
    app_slug="<app-slug>",
    workspace_slug="<workspace-slug>",
    content=[
        table_widget,
        timeseries_widget,
    ],
)
Full Code
1
2
3
4
5
6
import pandas as pd
from engineai.sdk.dashboard.widgets import timeseries

timeseries_widget = timeseries.Timeseries(
    date_column="date", data=pd.read_json("data/timeseries.json")
)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
[
  {
    "date": 1556668800000,
    "open": 52.47,
    "high": 53.83,
    "low": 43.75,
    "close": 43.77,
    "volume": 2957826400
  },
  {
    "date": 1559347200000,
    "open": 43.9,
    "high": 50.39,
    "low": 42.57,
    "close": 49.48,
    "volume": 2060874800
  },
  {
    "date": 1561939200000,
    "open": 50.79,
    "high": 55.34,
    "low": 49.6,
    "close": 53.26,
    "volume": 1895406800
  },
  {
    "date": 1564617600000,
    "open": 53.47,
    "high": 54.51,
    "low": 48.14,
    "close": 52.19,
    "volume": 2724326400
  },
  {
    "date": 1567296000000,
    "open": 51.61,
    "high": 56.6,
    "low": 51.06,
    "close": 55.99,
    "volume": 2170268400
  },
  {
    "date": 1569888000000,
    "open": 56.27,
    "high": 62.44,
    "low": 53.78,
    "close": 62.19,
    "volume": 2433210800
  },
  {
    "date": 1572566400000,
    "open": 62.38,
    "high": 67.0,
    "low": 62.29,
    "close": 66.81,
    "volume": 1793326000
  },
  {
    "date": 1575158400000,
    "open": 66.82,
    "high": 73.49,
    "low": 64.07,
    "close": 73.41,
    "volume": 2388794800
  },
  {
    "date": 1577836800000,
    "open": 74.06,
    "high": 81.96,
    "low": 73.19,
    "close": 77.38,
    "volume": 2934370400
  },
  {
    "date": 1580515200000,
    "open": 76.07,
    "high": 81.81,
    "low": 64.09,
    "close": 68.34,
    "volume": 3019279200
  },
  {
    "date": 1583020800000,
    "open": 70.57,
    "high": 76.0,
    "low": 53.15,
    "close": 63.57,
    "volume": 6280072400
  },
  {
    "date": 1585699200000,
    "open": 61.62,
    "high": 73.63,
    "low": 59.22,
    "close": 73.45,
    "volume": 3265299200
  },
  {
    "date": 1588291200000,
    "open": 71.56,
    "high": 81.06,
    "low": 71.46,
    "close": 79.49,
    "volume": 2805936000
  },
  {
    "date": 1590969600000,
    "open": 79.44,
    "high": 93.1,
    "low": 79.3,
    "close": 91.2,
    "volume": 3243375600
  },
  {
    "date": 1593561600000,
    "open": 91.28,
    "high": 106.42,
    "low": 89.14,
    "close": 106.26,
    "volume": 3020283200
  },
  {
    "date": 1596240000000,
    "open": 108.2,
    "high": 131.0,
    "low": 107.89,
    "close": 129.04,
    "volume": 4070061100
  },
  {
    "date": 1598918400000,
    "open": 132.76,
    "high": 137.98,
    "low": 103.1,
    "close": 115.81,
    "volume": 3885245100
  },
  {
    "date": 1601510400000,
    "open": 117.64,
    "high": 125.39,
    "low": 107.72,
    "close": 108.86,
    "volume": 2894666500
  },
  {
    "date": 1604188800000,
    "open": 109.11,
    "high": 121.99,
    "low": 107.32,
    "close": 119.05,
    "volume": 2123077300
  },
  {
    "date": 1606780800000,
    "open": 121.01,
    "high": 138.79,
    "low": 120.01,
    "close": 132.69,
    "volume": 2322189600
  },
  {
    "date": 1609459200000,
    "open": 133.52,
    "high": 145.09,
    "low": 126.38,
    "close": 131.96,
    "volume": 2240262000
  },
  {
    "date": 1612137600000,
    "open": 133.75,
    "high": 137.88,
    "low": 118.39,
    "close": 121.26,
    "volume": 1833855600
  },
  {
    "date": 1614556800000,
    "open": 123.75,
    "high": 128.72,
    "low": 116.21,
    "close": 122.15,
    "volume": 2650418200
  },
  {
    "date": 1617235200000,
    "open": 123.66,
    "high": 137.07,
    "low": 122.49,
    "close": 131.46,
    "volume": 1889857500
  },
  {
    "date": 1619827200000,
    "open": 132.04,
    "high": 134.07,
    "low": 122.25,
    "close": 124.61,
    "volume": 1711934900
  },
  {
    "date": 1622505600000,
    "open": 125.08,
    "high": 137.41,
    "low": 123.13,
    "close": 136.96,
    "volume": 1606590000
  },
  {
    "date": 1625097600000,
    "open": 136.6,
    "high": 150.0,
    "low": 135.76,
    "close": 145.86,
    "volume": 1919035100
  },
  {
    "date": 1627776000000,
    "open": 146.36,
    "high": 153.49,
    "low": 144.5,
    "close": 151.83,
    "volume": 1461542800
  },
  {
    "date": 1630454400000,
    "open": 152.83,
    "high": 157.26,
    "low": 141.27,
    "close": 141.5,
    "volume": 1797835100
  },
  {
    "date": 1633046400000,
    "open": 141.9,
    "high": 153.17,
    "low": 138.27,
    "close": 149.8,
    "volume": 1565079200
  },
  {
    "date": 1635724800000,
    "open": 148.99,
    "high": 165.7,
    "low": 147.48,
    "close": 165.3,
    "volume": 1691029000
  },
  {
    "date": 1638316800000,
    "open": 167.48,
    "high": 182.13,
    "low": 157.8,
    "close": 177.57,
    "volume": 2444766700
  },
  {
    "date": 1640995200000,
    "open": 177.83,
    "high": 182.94,
    "low": 154.7,
    "close": 174.78,
    "volume": 2108446000
  },
  {
    "date": 1643673600000,
    "open": 174.01,
    "high": 176.65,
    "low": 152.0,
    "close": 165.12,
    "volume": 1627516300
  },
  {
    "date": 1646092800000,
    "open": 164.7,
    "high": 179.61,
    "low": 150.1,
    "close": 174.61,
    "volume": 2180800100
  },
  {
    "date": 1648771200000,
    "open": 174.03,
    "high": 178.49,
    "low": 155.38,
    "close": 157.65,
    "volume": 1687795600
  },
  {
    "date": 1651363200000,
    "open": 156.71,
    "high": 166.48,
    "low": 132.61,
    "close": 148.84,
    "volume": 2401040300
  },
  {
    "date": 1654041600000,
    "open": 149.9,
    "high": 151.74,
    "low": 129.04,
    "close": 136.72,
    "volume": 1749099800
  },
  {
    "date": 1656633600000,
    "open": 136.04,
    "high": 163.63,
    "low": 135.66,
    "close": 162.51,
    "volume": 1447125400
  },
  {
    "date": 1659312000000,
    "open": 161.01,
    "high": 176.15,
    "low": 157.14,
    "close": 157.22,
    "volume": 1510239600
  },
  {
    "date": 1661990400000,
    "open": 156.64,
    "high": 164.26,
    "low": 138.0,
    "close": 138.2,
    "volume": 2084722800
  },
  {
    "date": 1664582400000,
    "open": 138.21,
    "high": 157.5,
    "low": 134.37,
    "close": 153.34,
    "volume": 1868139700
  },
  {
    "date": 1667260800000,
    "open": 155.08,
    "high": 155.45,
    "low": 134.38,
    "close": 148.03,
    "volume": 1724847700
  },
  {
    "date": 1669852800000,
    "open": 148.21,
    "high": 150.92,
    "low": 125.87,
    "close": 129.93,
    "volume": 1675731200
  },
  {
    "date": 1672531200000,
    "open": 130.28,
    "high": 147.23,
    "low": 124.17,
    "close": 144.29,
    "volume": 1443652500
  },
  {
    "date": 1675209600000,
    "open": 143.97,
    "high": 157.38,
    "low": 141.32,
    "close": 147.41,
    "volume": 1307198900
  },
  {
    "date": 1677628800000,
    "open": 146.83,
    "high": 165.0,
    "low": 143.9,
    "close": 164.9,
    "volume": 1520266600
  },
  {
    "date": 1680307200000,
    "open": 164.27,
    "high": 169.85,
    "low": 159.78,
    "close": 169.68,
    "volume": 969709700
  },
  {
    "date": 1682899200000,
    "open": 169.28,
    "high": 179.35,
    "low": 164.31,
    "close": 177.25,
    "volume": 1275155500
  },
  {
    "date": 1685577600000,
    "open": 177.7,
    "high": 194.48,
    "low": 176.93,
    "close": 193.97,
    "volume": 1297101100
  },
  {
    "date": 1688169600000,
    "open": 193.78,
    "high": 198.23,
    "low": 186.6,
    "close": 196.45,
    "volume": 996066400
  },
  {
    "date": 1690848000000,
    "open": 196.24,
    "high": 196.73,
    "low": 171.96,
    "close": 187.87,
    "volume": 1322439400
  },
  {
    "date": 1693526400000,
    "open": 189.49,
    "high": 189.98,
    "low": 167.62,
    "close": 171.21,
    "volume": 1337586600
  },
  {
    "date": 1696118400000,
    "open": 171.22,
    "high": 182.34,
    "low": 165.67,
    "close": 170.77,
    "volume": 1172719600
  },
  {
    "date": 1698796800000,
    "open": 171.0,
    "high": 192.93,
    "low": 170.12,
    "close": 189.95,
    "volume": 1099586100
  },
  {
    "date": 1701388800000,
    "open": 190.33,
    "high": 199.62,
    "low": 187.45,
    "close": 192.53,
    "volume": 1062774800
  },
  {
    "date": 1704067200000,
    "open": 187.15,
    "high": 196.38,
    "low": 180.17,
    "close": 184.4,
    "volume": 1187219300
  },
  {
    "date": 1706745600000,
    "open": 183.99,
    "high": 191.05,
    "low": 179.25,
    "close": 180.75,
    "volume": 1161627000
  },
  {
    "date": 1709251200000,
    "open": 179.55,
    "high": 180.53,
    "low": 168.49,
    "close": 171.48,
    "volume": 1432782800
  },
  {
    "date": 1711929600000,
    "open": 171.19,
    "high": 171.25,
    "low": 168.23,
    "close": 168.84,
    "volume": 95498800
  },
  {
    "date": 1712016000000,
    "open": 169.06,
    "high": 169.34,
    "low": 168.23,
    "close": 168.84,
    "volume": 47248438
  }
]
from engineai.sdk.dashboard import dashboard
from widgets.table import table_widget
from widgets.timeseries import timeseries_widget

dashboard.Dashboard(
    slug="new_dashboard",
    app_slug="<app-slug>",
    workspace_slug="<workspace-slug>",
    content=[
        table_widget,
        timeseries_widget,
    ],
)

Publish your Dashboard once again, and upon doing so, you'll observe the timeseries widget showcasing all prices.

engineai dashboard publish

Result

You've successfully created a timeseries widget. Additionally, we've ensured that the timeseries widget employs the Date column as the reference for dates through the date_column parameter.

Customizing Charts and Series#

It is possible to adjust the number of charts and series on the timeseries widget to better showcase data.

There are different types of series that can be used in the Timeseries widget:

In this section, we will add two charts. The first chart will have:

  • LineSeries to visualize the open and close stock's start and end price, respectively, of a given day .
  • AreaRangeSeries to visualize the high and low stock's highest and lowest price, respectively, of a given day.

The second chart will have:

  • ColumnSeries to visualize the volume stock's trading volume of a given day.
import pandas as pd
from engineai.sdk.dashboard.widgets import timeseries

timeseries_widget = timeseries.Timeseries(
    date_column="date",
    data=pd.read_json(
        "data/timeseries.json",
        orient="records",
    ),
    charts=[
        timeseries.Chart(
            left_y_axis=timeseries.YAxis().add_series(
                timeseries.LineSeries(data_column="open"),
                timeseries.LineSeries(data_column="close"),
                timeseries.AreaRangeSeries(
                    low_data_column="low",
                    high_data_column="high",
                    name="High-Low Range",
                ),
            )
        ),
        timeseries.Chart(left_y_axis=timeseries.ColumnSeries(data_column="volume")),
    ],
)
Full Code
import pandas as pd
from engineai.sdk.dashboard.widgets import timeseries

timeseries_widget = timeseries.Timeseries(
    date_column="date",
    data=pd.read_json(
        "data/timeseries.json",
        orient="records",
    ),
    charts=[
        timeseries.Chart(
            left_y_axis=timeseries.YAxis().add_series(
                timeseries.LineSeries(data_column="open"),
                timeseries.LineSeries(data_column="close"),
                timeseries.AreaRangeSeries(
                    low_data_column="low",
                    high_data_column="high",
                    name="High-Low Range",
                ),
            )
        ),
        timeseries.Chart(left_y_axis=timeseries.ColumnSeries(data_column="volume")),
    ],
)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
[
  {
    "date": 1556668800000,
    "open": 52.47,
    "high": 53.83,
    "low": 43.75,
    "close": 43.77,
    "volume": 2957826400
  },
  {
    "date": 1559347200000,
    "open": 43.9,
    "high": 50.39,
    "low": 42.57,
    "close": 49.48,
    "volume": 2060874800
  },
  {
    "date": 1561939200000,
    "open": 50.79,
    "high": 55.34,
    "low": 49.6,
    "close": 53.26,
    "volume": 1895406800
  },
  {
    "date": 1564617600000,
    "open": 53.47,
    "high": 54.51,
    "low": 48.14,
    "close": 52.19,
    "volume": 2724326400
  },
  {
    "date": 1567296000000,
    "open": 51.61,
    "high": 56.6,
    "low": 51.06,
    "close": 55.99,
    "volume": 2170268400
  },
  {
    "date": 1569888000000,
    "open": 56.27,
    "high": 62.44,
    "low": 53.78,
    "close": 62.19,
    "volume": 2433210800
  },
  {
    "date": 1572566400000,
    "open": 62.38,
    "high": 67.0,
    "low": 62.29,
    "close": 66.81,
    "volume": 1793326000
  },
  {
    "date": 1575158400000,
    "open": 66.82,
    "high": 73.49,
    "low": 64.07,
    "close": 73.41,
    "volume": 2388794800
  },
  {
    "date": 1577836800000,
    "open": 74.06,
    "high": 81.96,
    "low": 73.19,
    "close": 77.38,
    "volume": 2934370400
  },
  {
    "date": 1580515200000,
    "open": 76.07,
    "high": 81.81,
    "low": 64.09,
    "close": 68.34,
    "volume": 3019279200
  },
  {
    "date": 1583020800000,
    "open": 70.57,
    "high": 76.0,
    "low": 53.15,
    "close": 63.57,
    "volume": 6280072400
  },
  {
    "date": 1585699200000,
    "open": 61.62,
    "high": 73.63,
    "low": 59.22,
    "close": 73.45,
    "volume": 3265299200
  },
  {
    "date": 1588291200000,
    "open": 71.56,
    "high": 81.06,
    "low": 71.46,
    "close": 79.49,
    "volume": 2805936000
  },
  {
    "date": 1590969600000,
    "open": 79.44,
    "high": 93.1,
    "low": 79.3,
    "close": 91.2,
    "volume": 3243375600
  },
  {
    "date": 1593561600000,
    "open": 91.28,
    "high": 106.42,
    "low": 89.14,
    "close": 106.26,
    "volume": 3020283200
  },
  {
    "date": 1596240000000,
    "open": 108.2,
    "high": 131.0,
    "low": 107.89,
    "close": 129.04,
    "volume": 4070061100
  },
  {
    "date": 1598918400000,
    "open": 132.76,
    "high": 137.98,
    "low": 103.1,
    "close": 115.81,
    "volume": 3885245100
  },
  {
    "date": 1601510400000,
    "open": 117.64,
    "high": 125.39,
    "low": 107.72,
    "close": 108.86,
    "volume": 2894666500
  },
  {
    "date": 1604188800000,
    "open": 109.11,
    "high": 121.99,
    "low": 107.32,
    "close": 119.05,
    "volume": 2123077300
  },
  {
    "date": 1606780800000,
    "open": 121.01,
    "high": 138.79,
    "low": 120.01,
    "close": 132.69,
    "volume": 2322189600
  },
  {
    "date": 1609459200000,
    "open": 133.52,
    "high": 145.09,
    "low": 126.38,
    "close": 131.96,
    "volume": 2240262000
  },
  {
    "date": 1612137600000,
    "open": 133.75,
    "high": 137.88,
    "low": 118.39,
    "close": 121.26,
    "volume": 1833855600
  },
  {
    "date": 1614556800000,
    "open": 123.75,
    "high": 128.72,
    "low": 116.21,
    "close": 122.15,
    "volume": 2650418200
  },
  {
    "date": 1617235200000,
    "open": 123.66,
    "high": 137.07,
    "low": 122.49,
    "close": 131.46,
    "volume": 1889857500
  },
  {
    "date": 1619827200000,
    "open": 132.04,
    "high": 134.07,
    "low": 122.25,
    "close": 124.61,
    "volume": 1711934900
  },
  {
    "date": 1622505600000,
    "open": 125.08,
    "high": 137.41,
    "low": 123.13,
    "close": 136.96,
    "volume": 1606590000
  },
  {
    "date": 1625097600000,
    "open": 136.6,
    "high": 150.0,
    "low": 135.76,
    "close": 145.86,
    "volume": 1919035100
  },
  {
    "date": 1627776000000,
    "open": 146.36,
    "high": 153.49,
    "low": 144.5,
    "close": 151.83,
    "volume": 1461542800
  },
  {
    "date": 1630454400000,
    "open": 152.83,
    "high": 157.26,
    "low": 141.27,
    "close": 141.5,
    "volume": 1797835100
  },
  {
    "date": 1633046400000,
    "open": 141.9,
    "high": 153.17,
    "low": 138.27,
    "close": 149.8,
    "volume": 1565079200
  },
  {
    "date": 1635724800000,
    "open": 148.99,
    "high": 165.7,
    "low": 147.48,
    "close": 165.3,
    "volume": 1691029000
  },
  {
    "date": 1638316800000,
    "open": 167.48,
    "high": 182.13,
    "low": 157.8,
    "close": 177.57,
    "volume": 2444766700
  },
  {
    "date": 1640995200000,
    "open": 177.83,
    "high": 182.94,
    "low": 154.7,
    "close": 174.78,
    "volume": 2108446000
  },
  {
    "date": 1643673600000,
    "open": 174.01,
    "high": 176.65,
    "low": 152.0,
    "close": 165.12,
    "volume": 1627516300
  },
  {
    "date": 1646092800000,
    "open": 164.7,
    "high": 179.61,
    "low": 150.1,
    "close": 174.61,
    "volume": 2180800100
  },
  {
    "date": 1648771200000,
    "open": 174.03,
    "high": 178.49,
    "low": 155.38,
    "close": 157.65,
    "volume": 1687795600
  },
  {
    "date": 1651363200000,
    "open": 156.71,
    "high": 166.48,
    "low": 132.61,
    "close": 148.84,
    "volume": 2401040300
  },
  {
    "date": 1654041600000,
    "open": 149.9,
    "high": 151.74,
    "low": 129.04,
    "close": 136.72,
    "volume": 1749099800
  },
  {
    "date": 1656633600000,
    "open": 136.04,
    "high": 163.63,
    "low": 135.66,
    "close": 162.51,
    "volume": 1447125400
  },
  {
    "date": 1659312000000,
    "open": 161.01,
    "high": 176.15,
    "low": 157.14,
    "close": 157.22,
    "volume": 1510239600
  },
  {
    "date": 1661990400000,
    "open": 156.64,
    "high": 164.26,
    "low": 138.0,
    "close": 138.2,
    "volume": 2084722800
  },
  {
    "date": 1664582400000,
    "open": 138.21,
    "high": 157.5,
    "low": 134.37,
    "close": 153.34,
    "volume": 1868139700
  },
  {
    "date": 1667260800000,
    "open": 155.08,
    "high": 155.45,
    "low": 134.38,
    "close": 148.03,
    "volume": 1724847700
  },
  {
    "date": 1669852800000,
    "open": 148.21,
    "high": 150.92,
    "low": 125.87,
    "close": 129.93,
    "volume": 1675731200
  },
  {
    "date": 1672531200000,
    "open": 130.28,
    "high": 147.23,
    "low": 124.17,
    "close": 144.29,
    "volume": 1443652500
  },
  {
    "date": 1675209600000,
    "open": 143.97,
    "high": 157.38,
    "low": 141.32,
    "close": 147.41,
    "volume": 1307198900
  },
  {
    "date": 1677628800000,
    "open": 146.83,
    "high": 165.0,
    "low": 143.9,
    "close": 164.9,
    "volume": 1520266600
  },
  {
    "date": 1680307200000,
    "open": 164.27,
    "high": 169.85,
    "low": 159.78,
    "close": 169.68,
    "volume": 969709700
  },
  {
    "date": 1682899200000,
    "open": 169.28,
    "high": 179.35,
    "low": 164.31,
    "close": 177.25,
    "volume": 1275155500
  },
  {
    "date": 1685577600000,
    "open": 177.7,
    "high": 194.48,
    "low": 176.93,
    "close": 193.97,
    "volume": 1297101100
  },
  {
    "date": 1688169600000,
    "open": 193.78,
    "high": 198.23,
    "low": 186.6,
    "close": 196.45,
    "volume": 996066400
  },
  {
    "date": 1690848000000,
    "open": 196.24,
    "high": 196.73,
    "low": 171.96,
    "close": 187.87,
    "volume": 1322439400
  },
  {
    "date": 1693526400000,
    "open": 189.49,
    "high": 189.98,
    "low": 167.62,
    "close": 171.21,
    "volume": 1337586600
  },
  {
    "date": 1696118400000,
    "open": 171.22,
    "high": 182.34,
    "low": 165.67,
    "close": 170.77,
    "volume": 1172719600
  },
  {
    "date": 1698796800000,
    "open": 171.0,
    "high": 192.93,
    "low": 170.12,
    "close": 189.95,
    "volume": 1099586100
  },
  {
    "date": 1701388800000,
    "open": 190.33,
    "high": 199.62,
    "low": 187.45,
    "close": 192.53,
    "volume": 1062774800
  },
  {
    "date": 1704067200000,
    "open": 187.15,
    "high": 196.38,
    "low": 180.17,
    "close": 184.4,
    "volume": 1187219300
  },
  {
    "date": 1706745600000,
    "open": 183.99,
    "high": 191.05,
    "low": 179.25,
    "close": 180.75,
    "volume": 1161627000
  },
  {
    "date": 1709251200000,
    "open": 179.55,
    "high": 180.53,
    "low": 168.49,
    "close": 171.48,
    "volume": 1432782800
  },
  {
    "date": 1711929600000,
    "open": 171.19,
    "high": 171.25,
    "low": 168.23,
    "close": 168.84,
    "volume": 95498800
  },
  {
    "date": 1712016000000,
    "open": 169.06,
    "high": 169.34,
    "low": 168.23,
    "close": 168.84,
    "volume": 47248438
  }
]
from engineai.sdk.dashboard import dashboard
from widgets.table import table_widget
from widgets.timeseries import timeseries_widget

dashboard.Dashboard(
    slug="new_dashboard",
    app_slug="<app-slug>",
    workspace_slug="<workspace-slug>",
    content=[
        table_widget,
        timeseries_widget,
    ],
)

Publish your Dashboard to see the changes you have made to the timeseries widget:

engineai dashboard publish

Result

Axis Formatting#

Let's extend the formatting to the indexed price in the timeseries.py file within the widgets directory by incorporating an AxisNumberFormatting class.

This specific formatting will add a dollar sign ($) on the left side of the price along the y-axis.

This formatting adjustment will be applicable to all series represented on the y-axis.

import pandas as pd
from engineai.sdk.dashboard import formatting
from engineai.sdk.dashboard.widgets import timeseries

timeseries_widget = timeseries.Timeseries(
    date_column="date",
    data=pd.read_json(
        "data/timeseries.json",
        orient="records",
    ),
    charts=[
        timeseries.Chart(
            left_y_axis=timeseries.YAxis(
                formatting=formatting.AxisNumberFormatting(prefix="$")
            ).add_series(
                timeseries.LineSeries(data_column="open"),
                timeseries.LineSeries(data_column="close"),
                timeseries.AreaRangeSeries(
                    low_data_column="low",
                    high_data_column="high",
                    name="High-Low Range",
                ),
            )
        ),
        timeseries.Chart(left_y_axis=timeseries.ColumnSeries(data_column="volume")),
    ],
)
Full Code
import pandas as pd
from engineai.sdk.dashboard import formatting
from engineai.sdk.dashboard.widgets import timeseries

timeseries_widget = timeseries.Timeseries(
    date_column="date",
    data=pd.read_json(
        "data/timeseries.json",
        orient="records",
    ),
    charts=[
        timeseries.Chart(
            left_y_axis=timeseries.YAxis(
                formatting=formatting.AxisNumberFormatting(prefix="$")
            ).add_series(
                timeseries.LineSeries(data_column="open"),
                timeseries.LineSeries(data_column="close"),
                timeseries.AreaRangeSeries(
                    low_data_column="low",
                    high_data_column="high",
                    name="High-Low Range",
                ),
            )
        ),
        timeseries.Chart(left_y_axis=timeseries.ColumnSeries(data_column="volume")),
    ],
)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
[
  {
    "date": 1556668800000,
    "open": 52.47,
    "high": 53.83,
    "low": 43.75,
    "close": 43.77,
    "volume": 2957826400
  },
  {
    "date": 1559347200000,
    "open": 43.9,
    "high": 50.39,
    "low": 42.57,
    "close": 49.48,
    "volume": 2060874800
  },
  {
    "date": 1561939200000,
    "open": 50.79,
    "high": 55.34,
    "low": 49.6,
    "close": 53.26,
    "volume": 1895406800
  },
  {
    "date": 1564617600000,
    "open": 53.47,
    "high": 54.51,
    "low": 48.14,
    "close": 52.19,
    "volume": 2724326400
  },
  {
    "date": 1567296000000,
    "open": 51.61,
    "high": 56.6,
    "low": 51.06,
    "close": 55.99,
    "volume": 2170268400
  },
  {
    "date": 1569888000000,
    "open": 56.27,
    "high": 62.44,
    "low": 53.78,
    "close": 62.19,
    "volume": 2433210800
  },
  {
    "date": 1572566400000,
    "open": 62.38,
    "high": 67.0,
    "low": 62.29,
    "close": 66.81,
    "volume": 1793326000
  },
  {
    "date": 1575158400000,
    "open": 66.82,
    "high": 73.49,
    "low": 64.07,
    "close": 73.41,
    "volume": 2388794800
  },
  {
    "date": 1577836800000,
    "open": 74.06,
    "high": 81.96,
    "low": 73.19,
    "close": 77.38,
    "volume": 2934370400
  },
  {
    "date": 1580515200000,
    "open": 76.07,
    "high": 81.81,
    "low": 64.09,
    "close": 68.34,
    "volume": 3019279200
  },
  {
    "date": 1583020800000,
    "open": 70.57,
    "high": 76.0,
    "low": 53.15,
    "close": 63.57,
    "volume": 6280072400
  },
  {
    "date": 1585699200000,
    "open": 61.62,
    "high": 73.63,
    "low": 59.22,
    "close": 73.45,
    "volume": 3265299200
  },
  {
    "date": 1588291200000,
    "open": 71.56,
    "high": 81.06,
    "low": 71.46,
    "close": 79.49,
    "volume": 2805936000
  },
  {
    "date": 1590969600000,
    "open": 79.44,
    "high": 93.1,
    "low": 79.3,
    "close": 91.2,
    "volume": 3243375600
  },
  {
    "date": 1593561600000,
    "open": 91.28,
    "high": 106.42,
    "low": 89.14,
    "close": 106.26,
    "volume": 3020283200
  },
  {
    "date": 1596240000000,
    "open": 108.2,
    "high": 131.0,
    "low": 107.89,
    "close": 129.04,
    "volume": 4070061100
  },
  {
    "date": 1598918400000,
    "open": 132.76,
    "high": 137.98,
    "low": 103.1,
    "close": 115.81,
    "volume": 3885245100
  },
  {
    "date": 1601510400000,
    "open": 117.64,
    "high": 125.39,
    "low": 107.72,
    "close": 108.86,
    "volume": 2894666500
  },
  {
    "date": 1604188800000,
    "open": 109.11,
    "high": 121.99,
    "low": 107.32,
    "close": 119.05,
    "volume": 2123077300
  },
  {
    "date": 1606780800000,
    "open": 121.01,
    "high": 138.79,
    "low": 120.01,
    "close": 132.69,
    "volume": 2322189600
  },
  {
    "date": 1609459200000,
    "open": 133.52,
    "high": 145.09,
    "low": 126.38,
    "close": 131.96,
    "volume": 2240262000
  },
  {
    "date": 1612137600000,
    "open": 133.75,
    "high": 137.88,
    "low": 118.39,
    "close": 121.26,
    "volume": 1833855600
  },
  {
    "date": 1614556800000,
    "open": 123.75,
    "high": 128.72,
    "low": 116.21,
    "close": 122.15,
    "volume": 2650418200
  },
  {
    "date": 1617235200000,
    "open": 123.66,
    "high": 137.07,
    "low": 122.49,
    "close": 131.46,
    "volume": 1889857500
  },
  {
    "date": 1619827200000,
    "open": 132.04,
    "high": 134.07,
    "low": 122.25,
    "close": 124.61,
    "volume": 1711934900
  },
  {
    "date": 1622505600000,
    "open": 125.08,
    "high": 137.41,
    "low": 123.13,
    "close": 136.96,
    "volume": 1606590000
  },
  {
    "date": 1625097600000,
    "open": 136.6,
    "high": 150.0,
    "low": 135.76,
    "close": 145.86,
    "volume": 1919035100
  },
  {
    "date": 1627776000000,
    "open": 146.36,
    "high": 153.49,
    "low": 144.5,
    "close": 151.83,
    "volume": 1461542800
  },
  {
    "date": 1630454400000,
    "open": 152.83,
    "high": 157.26,
    "low": 141.27,
    "close": 141.5,
    "volume": 1797835100
  },
  {
    "date": 1633046400000,
    "open": 141.9,
    "high": 153.17,
    "low": 138.27,
    "close": 149.8,
    "volume": 1565079200
  },
  {
    "date": 1635724800000,
    "open": 148.99,
    "high": 165.7,
    "low": 147.48,
    "close": 165.3,
    "volume": 1691029000
  },
  {
    "date": 1638316800000,
    "open": 167.48,
    "high": 182.13,
    "low": 157.8,
    "close": 177.57,
    "volume": 2444766700
  },
  {
    "date": 1640995200000,
    "open": 177.83,
    "high": 182.94,
    "low": 154.7,
    "close": 174.78,
    "volume": 2108446000
  },
  {
    "date": 1643673600000,
    "open": 174.01,
    "high": 176.65,
    "low": 152.0,
    "close": 165.12,
    "volume": 1627516300
  },
  {
    "date": 1646092800000,
    "open": 164.7,
    "high": 179.61,
    "low": 150.1,
    "close": 174.61,
    "volume": 2180800100
  },
  {
    "date": 1648771200000,
    "open": 174.03,
    "high": 178.49,
    "low": 155.38,
    "close": 157.65,
    "volume": 1687795600
  },
  {
    "date": 1651363200000,
    "open": 156.71,
    "high": 166.48,
    "low": 132.61,
    "close": 148.84,
    "volume": 2401040300
  },
  {
    "date": 1654041600000,
    "open": 149.9,
    "high": 151.74,
    "low": 129.04,
    "close": 136.72,
    "volume": 1749099800
  },
  {
    "date": 1656633600000,
    "open": 136.04,
    "high": 163.63,
    "low": 135.66,
    "close": 162.51,
    "volume": 1447125400
  },
  {
    "date": 1659312000000,
    "open": 161.01,
    "high": 176.15,
    "low": 157.14,
    "close": 157.22,
    "volume": 1510239600
  },
  {
    "date": 1661990400000,
    "open": 156.64,
    "high": 164.26,
    "low": 138.0,
    "close": 138.2,
    "volume": 2084722800
  },
  {
    "date": 1664582400000,
    "open": 138.21,
    "high": 157.5,
    "low": 134.37,
    "close": 153.34,
    "volume": 1868139700
  },
  {
    "date": 1667260800000,
    "open": 155.08,
    "high": 155.45,
    "low": 134.38,
    "close": 148.03,
    "volume": 1724847700
  },
  {
    "date": 1669852800000,
    "open": 148.21,
    "high": 150.92,
    "low": 125.87,
    "close": 129.93,
    "volume": 1675731200
  },
  {
    "date": 1672531200000,
    "open": 130.28,
    "high": 147.23,
    "low": 124.17,
    "close": 144.29,
    "volume": 1443652500
  },
  {
    "date": 1675209600000,
    "open": 143.97,
    "high": 157.38,
    "low": 141.32,
    "close": 147.41,
    "volume": 1307198900
  },
  {
    "date": 1677628800000,
    "open": 146.83,
    "high": 165.0,
    "low": 143.9,
    "close": 164.9,
    "volume": 1520266600
  },
  {
    "date": 1680307200000,
    "open": 164.27,
    "high": 169.85,
    "low": 159.78,
    "close": 169.68,
    "volume": 969709700
  },
  {
    "date": 1682899200000,
    "open": 169.28,
    "high": 179.35,
    "low": 164.31,
    "close": 177.25,
    "volume": 1275155500
  },
  {
    "date": 1685577600000,
    "open": 177.7,
    "high": 194.48,
    "low": 176.93,
    "close": 193.97,
    "volume": 1297101100
  },
  {
    "date": 1688169600000,
    "open": 193.78,
    "high": 198.23,
    "low": 186.6,
    "close": 196.45,
    "volume": 996066400
  },
  {
    "date": 1690848000000,
    "open": 196.24,
    "high": 196.73,
    "low": 171.96,
    "close": 187.87,
    "volume": 1322439400
  },
  {
    "date": 1693526400000,
    "open": 189.49,
    "high": 189.98,
    "low": 167.62,
    "close": 171.21,
    "volume": 1337586600
  },
  {
    "date": 1696118400000,
    "open": 171.22,
    "high": 182.34,
    "low": 165.67,
    "close": 170.77,
    "volume": 1172719600
  },
  {
    "date": 1698796800000,
    "open": 171.0,
    "high": 192.93,
    "low": 170.12,
    "close": 189.95,
    "volume": 1099586100
  },
  {
    "date": 1701388800000,
    "open": 190.33,
    "high": 199.62,
    "low": 187.45,
    "close": 192.53,
    "volume": 1062774800
  },
  {
    "date": 1704067200000,
    "open": 187.15,
    "high": 196.38,
    "low": 180.17,
    "close": 184.4,
    "volume": 1187219300
  },
  {
    "date": 1706745600000,
    "open": 183.99,
    "high": 191.05,
    "low": 179.25,
    "close": 180.75,
    "volume": 1161627000
  },
  {
    "date": 1709251200000,
    "open": 179.55,
    "high": 180.53,
    "low": 168.49,
    "close": 171.48,
    "volume": 1432782800
  },
  {
    "date": 1711929600000,
    "open": 171.19,
    "high": 171.25,
    "low": 168.23,
    "close": 168.84,
    "volume": 95498800
  },
  {
    "date": 1712016000000,
    "open": 169.06,
    "high": 169.34,
    "low": 168.23,
    "close": 168.84,
    "volume": 47248438
  }
]
from engineai.sdk.dashboard import dashboard
from widgets.table import table_widget
from widgets.timeseries import timeseries_widget

dashboard.Dashboard(
    slug="new_dashboard",
    app_slug="<app-slug>",
    workspace_slug="<workspace-slug>",
    content=[
        table_widget,
        timeseries_widget,
    ],
)

If you run the dashboard now, you will see that the formatting has changed.

engineai dashboard publish

Result

Styling Timeseries#

As for the timeseries, styling options can vary based on the specific component. For this example we will do a simple color change to the AreaRangeSeries. You will set the color to a fixed yellow color.

Let's now change the color of the AreaRangeSeries in the timeseries.py file in the widgets directory:

import pandas as pd
from engineai.sdk.dashboard import formatting
from engineai.sdk.dashboard.styling import color
from engineai.sdk.dashboard.widgets import timeseries

timeseries_widget = timeseries.Timeseries(
    date_column="date",
    data=pd.read_json("data/timeseries.json", orient="records"),
    charts=[
        timeseries.Chart(
            left_y_axis=timeseries.YAxis(
                formatting=formatting.AxisNumberFormatting(prefix="$")
            ).add_series(
                timeseries.LineSeries(data_column="open"),
                timeseries.LineSeries(data_column="close"),
                timeseries.AreaRangeSeries(
                    low_data_column="low",
                    high_data_column="high",
                    name="High-Low Range",
                    styling=timeseries.AreaRangeSeriesStyling(
                        color_spec=color.Palette.BANANA_YELLOW
                    ),
                ),
            )
        ),
        timeseries.Chart(left_y_axis=timeseries.ColumnSeries(data_column="volume")),
    ],
)
Full Code
import pandas as pd
from engineai.sdk.dashboard import formatting
from engineai.sdk.dashboard.styling import color
from engineai.sdk.dashboard.widgets import timeseries

timeseries_widget = timeseries.Timeseries(
    date_column="date",
    data=pd.read_json("data/timeseries.json", orient="records"),
    charts=[
        timeseries.Chart(
            left_y_axis=timeseries.YAxis(
                formatting=formatting.AxisNumberFormatting(prefix="$")
            ).add_series(
                timeseries.LineSeries(data_column="open"),
                timeseries.LineSeries(data_column="close"),
                timeseries.AreaRangeSeries(
                    low_data_column="low",
                    high_data_column="high",
                    name="High-Low Range",
                    styling=timeseries.AreaRangeSeriesStyling(
                        color_spec=color.Palette.BANANA_YELLOW
                    ),
                ),
            )
        ),
        timeseries.Chart(left_y_axis=timeseries.ColumnSeries(data_column="volume")),
    ],
)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
[
  {
    "date": 1556668800000,
    "open": 52.47,
    "high": 53.83,
    "low": 43.75,
    "close": 43.77,
    "volume": 2957826400
  },
  {
    "date": 1559347200000,
    "open": 43.9,
    "high": 50.39,
    "low": 42.57,
    "close": 49.48,
    "volume": 2060874800
  },
  {
    "date": 1561939200000,
    "open": 50.79,
    "high": 55.34,
    "low": 49.6,
    "close": 53.26,
    "volume": 1895406800
  },
  {
    "date": 1564617600000,
    "open": 53.47,
    "high": 54.51,
    "low": 48.14,
    "close": 52.19,
    "volume": 2724326400
  },
  {
    "date": 1567296000000,
    "open": 51.61,
    "high": 56.6,
    "low": 51.06,
    "close": 55.99,
    "volume": 2170268400
  },
  {
    "date": 1569888000000,
    "open": 56.27,
    "high": 62.44,
    "low": 53.78,
    "close": 62.19,
    "volume": 2433210800
  },
  {
    "date": 1572566400000,
    "open": 62.38,
    "high": 67.0,
    "low": 62.29,
    "close": 66.81,
    "volume": 1793326000
  },
  {
    "date": 1575158400000,
    "open": 66.82,
    "high": 73.49,
    "low": 64.07,
    "close": 73.41,
    "volume": 2388794800
  },
  {
    "date": 1577836800000,
    "open": 74.06,
    "high": 81.96,
    "low": 73.19,
    "close": 77.38,
    "volume": 2934370400
  },
  {
    "date": 1580515200000,
    "open": 76.07,
    "high": 81.81,
    "low": 64.09,
    "close": 68.34,
    "volume": 3019279200
  },
  {
    "date": 1583020800000,
    "open": 70.57,
    "high": 76.0,
    "low": 53.15,
    "close": 63.57,
    "volume": 6280072400
  },
  {
    "date": 1585699200000,
    "open": 61.62,
    "high": 73.63,
    "low": 59.22,
    "close": 73.45,
    "volume": 3265299200
  },
  {
    "date": 1588291200000,
    "open": 71.56,
    "high": 81.06,
    "low": 71.46,
    "close": 79.49,
    "volume": 2805936000
  },
  {
    "date": 1590969600000,
    "open": 79.44,
    "high": 93.1,
    "low": 79.3,
    "close": 91.2,
    "volume": 3243375600
  },
  {
    "date": 1593561600000,
    "open": 91.28,
    "high": 106.42,
    "low": 89.14,
    "close": 106.26,
    "volume": 3020283200
  },
  {
    "date": 1596240000000,
    "open": 108.2,
    "high": 131.0,
    "low": 107.89,
    "close": 129.04,
    "volume": 4070061100
  },
  {
    "date": 1598918400000,
    "open": 132.76,
    "high": 137.98,
    "low": 103.1,
    "close": 115.81,
    "volume": 3885245100
  },
  {
    "date": 1601510400000,
    "open": 117.64,
    "high": 125.39,
    "low": 107.72,
    "close": 108.86,
    "volume": 2894666500
  },
  {
    "date": 1604188800000,
    "open": 109.11,
    "high": 121.99,
    "low": 107.32,
    "close": 119.05,
    "volume": 2123077300
  },
  {
    "date": 1606780800000,
    "open": 121.01,
    "high": 138.79,
    "low": 120.01,
    "close": 132.69,
    "volume": 2322189600
  },
  {
    "date": 1609459200000,
    "open": 133.52,
    "high": 145.09,
    "low": 126.38,
    "close": 131.96,
    "volume": 2240262000
  },
  {
    "date": 1612137600000,
    "open": 133.75,
    "high": 137.88,
    "low": 118.39,
    "close": 121.26,
    "volume": 1833855600
  },
  {
    "date": 1614556800000,
    "open": 123.75,
    "high": 128.72,
    "low": 116.21,
    "close": 122.15,
    "volume": 2650418200
  },
  {
    "date": 1617235200000,
    "open": 123.66,
    "high": 137.07,
    "low": 122.49,
    "close": 131.46,
    "volume": 1889857500
  },
  {
    "date": 1619827200000,
    "open": 132.04,
    "high": 134.07,
    "low": 122.25,
    "close": 124.61,
    "volume": 1711934900
  },
  {
    "date": 1622505600000,
    "open": 125.08,
    "high": 137.41,
    "low": 123.13,
    "close": 136.96,
    "volume": 1606590000
  },
  {
    "date": 1625097600000,
    "open": 136.6,
    "high": 150.0,
    "low": 135.76,
    "close": 145.86,
    "volume": 1919035100
  },
  {
    "date": 1627776000000,
    "open": 146.36,
    "high": 153.49,
    "low": 144.5,
    "close": 151.83,
    "volume": 1461542800
  },
  {
    "date": 1630454400000,
    "open": 152.83,
    "high": 157.26,
    "low": 141.27,
    "close": 141.5,
    "volume": 1797835100
  },
  {
    "date": 1633046400000,
    "open": 141.9,
    "high": 153.17,
    "low": 138.27,
    "close": 149.8,
    "volume": 1565079200
  },
  {
    "date": 1635724800000,
    "open": 148.99,
    "high": 165.7,
    "low": 147.48,
    "close": 165.3,
    "volume": 1691029000
  },
  {
    "date": 1638316800000,
    "open": 167.48,
    "high": 182.13,
    "low": 157.8,
    "close": 177.57,
    "volume": 2444766700
  },
  {
    "date": 1640995200000,
    "open": 177.83,
    "high": 182.94,
    "low": 154.7,
    "close": 174.78,
    "volume": 2108446000
  },
  {
    "date": 1643673600000,
    "open": 174.01,
    "high": 176.65,
    "low": 152.0,
    "close": 165.12,
    "volume": 1627516300
  },
  {
    "date": 1646092800000,
    "open": 164.7,
    "high": 179.61,
    "low": 150.1,
    "close": 174.61,
    "volume": 2180800100
  },
  {
    "date": 1648771200000,
    "open": 174.03,
    "high": 178.49,
    "low": 155.38,
    "close": 157.65,
    "volume": 1687795600
  },
  {
    "date": 1651363200000,
    "open": 156.71,
    "high": 166.48,
    "low": 132.61,
    "close": 148.84,
    "volume": 2401040300
  },
  {
    "date": 1654041600000,
    "open": 149.9,
    "high": 151.74,
    "low": 129.04,
    "close": 136.72,
    "volume": 1749099800
  },
  {
    "date": 1656633600000,
    "open": 136.04,
    "high": 163.63,
    "low": 135.66,
    "close": 162.51,
    "volume": 1447125400
  },
  {
    "date": 1659312000000,
    "open": 161.01,
    "high": 176.15,
    "low": 157.14,
    "close": 157.22,
    "volume": 1510239600
  },
  {
    "date": 1661990400000,
    "open": 156.64,
    "high": 164.26,
    "low": 138.0,
    "close": 138.2,
    "volume": 2084722800
  },
  {
    "date": 1664582400000,
    "open": 138.21,
    "high": 157.5,
    "low": 134.37,
    "close": 153.34,
    "volume": 1868139700
  },
  {
    "date": 1667260800000,
    "open": 155.08,
    "high": 155.45,
    "low": 134.38,
    "close": 148.03,
    "volume": 1724847700
  },
  {
    "date": 1669852800000,
    "open": 148.21,
    "high": 150.92,
    "low": 125.87,
    "close": 129.93,
    "volume": 1675731200
  },
  {
    "date": 1672531200000,
    "open": 130.28,
    "high": 147.23,
    "low": 124.17,
    "close": 144.29,
    "volume": 1443652500
  },
  {
    "date": 1675209600000,
    "open": 143.97,
    "high": 157.38,
    "low": 141.32,
    "close": 147.41,
    "volume": 1307198900
  },
  {
    "date": 1677628800000,
    "open": 146.83,
    "high": 165.0,
    "low": 143.9,
    "close": 164.9,
    "volume": 1520266600
  },
  {
    "date": 1680307200000,
    "open": 164.27,
    "high": 169.85,
    "low": 159.78,
    "close": 169.68,
    "volume": 969709700
  },
  {
    "date": 1682899200000,
    "open": 169.28,
    "high": 179.35,
    "low": 164.31,
    "close": 177.25,
    "volume": 1275155500
  },
  {
    "date": 1685577600000,
    "open": 177.7,
    "high": 194.48,
    "low": 176.93,
    "close": 193.97,
    "volume": 1297101100
  },
  {
    "date": 1688169600000,
    "open": 193.78,
    "high": 198.23,
    "low": 186.6,
    "close": 196.45,
    "volume": 996066400
  },
  {
    "date": 1690848000000,
    "open": 196.24,
    "high": 196.73,
    "low": 171.96,
    "close": 187.87,
    "volume": 1322439400
  },
  {
    "date": 1693526400000,
    "open": 189.49,
    "high": 189.98,
    "low": 167.62,
    "close": 171.21,
    "volume": 1337586600
  },
  {
    "date": 1696118400000,
    "open": 171.22,
    "high": 182.34,
    "low": 165.67,
    "close": 170.77,
    "volume": 1172719600
  },
  {
    "date": 1698796800000,
    "open": 171.0,
    "high": 192.93,
    "low": 170.12,
    "close": 189.95,
    "volume": 1099586100
  },
  {
    "date": 1701388800000,
    "open": 190.33,
    "high": 199.62,
    "low": 187.45,
    "close": 192.53,
    "volume": 1062774800
  },
  {
    "date": 1704067200000,
    "open": 187.15,
    "high": 196.38,
    "low": 180.17,
    "close": 184.4,
    "volume": 1187219300
  },
  {
    "date": 1706745600000,
    "open": 183.99,
    "high": 191.05,
    "low": 179.25,
    "close": 180.75,
    "volume": 1161627000
  },
  {
    "date": 1709251200000,
    "open": 179.55,
    "high": 180.53,
    "low": 168.49,
    "close": 171.48,
    "volume": 1432782800
  },
  {
    "date": 1711929600000,
    "open": 171.19,
    "high": 171.25,
    "low": 168.23,
    "close": 168.84,
    "volume": 95498800
  },
  {
    "date": 1712016000000,
    "open": 169.06,
    "high": 169.34,
    "low": 168.23,
    "close": 168.84,
    "volume": 47248438
  }
]
from engineai.sdk.dashboard import dashboard
from widgets.table import table_widget
from widgets.timeseries import timeseries_widget

dashboard.Dashboard(
    slug="new_dashboard",
    app_slug="<app-slug>",
    workspace_slug="<workspace-slug>",
    content=[
        table_widget,
        timeseries_widget,
    ],
)

You can now publish the dashboard and see the changes.

engineai dashboard publish

Result

Now, besides data adjustments, you are now able to change the widgets' styling. In the next sections, we’ll cover some timeseries components such as tooltips, legends, navigation toolbars, and period selectors.

Tooltips#

For all widgets that present data using charts, you have the ability to incorporate tooltips. These tooltips can be added at either the series level or the chart level.

There are various types of tooltips:

  • CategoryTooltipItem: Displays the category name.
  • DatetimeTooltipItem: Displays the datetime value.
  • NumberTooltipItem: Displays the number value.
  • TextTooltipItem: Displays the text value.

Let's add tooltips to the timeseries widget. Change the previous code in the timeseries_widget widget to include tooltips:

import pandas as pd
from engineai.sdk.dashboard import formatting
from engineai.sdk.dashboard.styling import color
from engineai.sdk.dashboard.widgets import timeseries

timeseries_widget = timeseries.Timeseries(
    date_column="date",
    data=pd.read_json(
        "data/timeseries.json",
        orient="records",
    ),
    charts=[
        timeseries.Chart(
            left_y_axis=timeseries.YAxis(
                formatting=formatting.AxisNumberFormatting(prefix="$")
            ).add_series(
                timeseries.LineSeries(
                    data_column="open",
                    tooltips=timeseries.NumberTooltipItem(data_column="volume"),
                ),
                timeseries.LineSeries(
                    data_column="close",
                    tooltips=timeseries.NumberTooltipItem(data_column="volume"),
                ),
                timeseries.AreaRangeSeries(
                    low_data_column="low",
                    high_data_column="high",
                    name="High-Low Range",
                    styling=timeseries.AreaRangeSeriesStyling(
                        color_spec=color.Palette.BANANA_YELLOW
                    ),
                ),
            ),
            tooltips=[
                timeseries.NumberTooltipItem(data_column="high"),
                timeseries.NumberTooltipItem(data_column="low"),
            ],
        ),
        timeseries.Chart(left_y_axis=timeseries.ColumnSeries(data_column="volume")),
    ],
)

Legend#

You also have the option to adjust the position of the legend for widgets like the timeseries.

To modify the legend position in the timeseries widget, update the previous code within the timeseries_widget widget to include the desired legend position:

import pandas as pd
from engineai.sdk.dashboard import formatting
from engineai.sdk.dashboard.styling import color
from engineai.sdk.dashboard.widgets import timeseries

timeseries_widget = timeseries.Timeseries(
    date_column="date",
    data=pd.read_json("data/timeseries.json", orient="records"),
    legend=timeseries.LegendPosition.RIGHT,
    charts=[
        timeseries.Chart(
            left_y_axis=timeseries.YAxis(
                formatting=formatting.AxisNumberFormatting(prefix="$")
            ).add_series(
                timeseries.LineSeries(
                    data_column="open",
                    tooltips=timeseries.NumberTooltipItem(data_column="volume"),
                ),
                timeseries.LineSeries(
                    data_column="close",
                    tooltips=timeseries.NumberTooltipItem(data_column="volume"),
                ),
                timeseries.AreaRangeSeries(
                    low_data_column="low",
                    high_data_column="high",
                    name="High-Low Range",
                    styling=timeseries.AreaRangeSeriesStyling(
                        color_spec=color.Palette.BANANA_YELLOW
                    ),
                ),
            ),
            tooltips=[
                timeseries.NumberTooltipItem(data_column="high"),
                timeseries.NumberTooltipItem(data_column="low"),
            ],
        ),
        timeseries.Chart(left_y_axis=timeseries.ColumnSeries(data_column="volume")),
    ],
)

Now, let's proceed to include a Navigation Toolbar to the timeseries widget.

To do this, you'll need to modify the previous code in the timeseries_widget widget to incorporate the Navigation Toolbar:

import pandas as pd
from engineai.sdk.dashboard import formatting
from engineai.sdk.dashboard.styling import color
from engineai.sdk.dashboard.widgets import timeseries

timeseries_widget = timeseries.Timeseries(
    date_column="date",
    data=pd.read_json("data/timeseries.json", orient="records"),
    legend=timeseries.LegendPosition.RIGHT,
    navigator=timeseries.ColumnSeries(data_column="volume"),
    charts=[
        timeseries.Chart(
            left_y_axis=timeseries.YAxis(
                formatting=formatting.AxisNumberFormatting(prefix="$")
            ).add_series(
                timeseries.LineSeries(
                    data_column="open",
                    tooltips=timeseries.NumberTooltipItem(data_column="volume"),
                ),
                timeseries.LineSeries(
                    data_column="close",
                    tooltips=timeseries.NumberTooltipItem(data_column="volume"),
                ),
                timeseries.AreaRangeSeries(
                    low_data_column="low",
                    high_data_column="high",
                    name="High-Low Range",
                    styling=timeseries.AreaRangeSeriesStyling(
                        color_spec=color.Palette.BANANA_YELLOW
                    ),
                ),
            ),
            tooltips=[
                timeseries.NumberTooltipItem(data_column="high"),
                timeseries.NumberTooltipItem(data_column="low"),
            ],
        ),
        timeseries.Chart(left_y_axis=timeseries.ColumnSeries(data_column="volume")),
    ],
)
Add multiple series

You have the ability to introduce one or multiple series within the Navigation Toolbar using the following code:

1
2
3
4
5
navigator=timeseries.Navigator(
    timeseries.ColumnSeries(data_column="volume"),
    timeseries.LineSeries(data_column="open"),
    timeseries.LineSeries(data_column="close"),
),

Period Selector#

The timeseries widget lets you include a PeriodSelector class, enabling easy changes to the displayed data's time period in the chart.

By default, the Period Selector has the following options:

  • 1 Month
  • 3 Months
  • YTD
  • 1 Year
  • 5 Years

Let's customize the Period Selector by modifying the existing code within the timeseries_widget widget:

import pandas as pd
from engineai.sdk.dashboard import formatting
from engineai.sdk.dashboard.styling import color
from engineai.sdk.dashboard.widgets import timeseries

timeseries_widget = timeseries.Timeseries(
    date_column="date",
    data=pd.read_json("data/timeseries.json", orient="records"),
    legend=timeseries.LegendPosition.RIGHT,
    navigator=timeseries.ColumnSeries(data_column="volume"),
    period_selector=timeseries.PeriodSelector(
        timeseries.Period.M1,
        timeseries.Period.M3,
        timeseries.Period.ALL,
        default_selection=2,
    ),
    charts=[
        timeseries.Chart(
            left_y_axis=timeseries.YAxis(
                formatting=formatting.AxisNumberFormatting(prefix="$")
            ).add_series(
                timeseries.LineSeries(
                    data_column="open",
                    tooltips=timeseries.NumberTooltipItem(data_column="volume"),
                ),
                timeseries.LineSeries(
                    data_column="close",
                    tooltips=timeseries.NumberTooltipItem(data_column="volume"),
                ),
                timeseries.AreaRangeSeries(
                    low_data_column="low",
                    high_data_column="high",
                    name="High-Low Range",
                    styling=timeseries.AreaRangeSeriesStyling(
                        color_spec=color.Palette.BANANA_YELLOW
                    ),
                ),
            ),
            tooltips=[
                timeseries.NumberTooltipItem(data_column="high"),
                timeseries.NumberTooltipItem(data_column="low"),
            ],
        ),
        timeseries.Chart(left_y_axis=timeseries.ColumnSeries(data_column="volume")),
    ],
)

You can set the default selected period when the widget loads by incorporating the default_selection parameter. In this case, the default period selected is 3 Months.

Full Code
import pandas as pd
from engineai.sdk.dashboard import formatting
from engineai.sdk.dashboard.styling import color
from engineai.sdk.dashboard.widgets import timeseries

timeseries_widget = timeseries.Timeseries(
    date_column="date",
    data=pd.read_json("data/timeseries.json", orient="records"),
    legend=timeseries.LegendPosition.RIGHT,
    navigator=timeseries.ColumnSeries(data_column="volume"),
    period_selector=timeseries.PeriodSelector(
        timeseries.Period.M1,
        timeseries.Period.M3,
        timeseries.Period.ALL,
        default_selection=2,
    ),
    charts=[
        timeseries.Chart(
            left_y_axis=timeseries.YAxis(
                formatting=formatting.AxisNumberFormatting(prefix="$")
            ).add_series(
                timeseries.LineSeries(
                    data_column="open",
                    tooltips=timeseries.NumberTooltipItem(data_column="volume"),
                ),
                timeseries.LineSeries(
                    data_column="close",
                    tooltips=timeseries.NumberTooltipItem(data_column="volume"),
                ),
                timeseries.AreaRangeSeries(
                    low_data_column="low",
                    high_data_column="high",
                    name="High-Low Range",
                    styling=timeseries.AreaRangeSeriesStyling(
                        color_spec=color.Palette.BANANA_YELLOW
                    ),
                ),
            ),
            tooltips=[
                timeseries.NumberTooltipItem(data_column="high"),
                timeseries.NumberTooltipItem(data_column="low"),
            ],
        ),
        timeseries.Chart(left_y_axis=timeseries.ColumnSeries(data_column="volume")),
    ],
)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
[
  {
    "date": 1556668800000,
    "open": 52.47,
    "high": 53.83,
    "low": 43.75,
    "close": 43.77,
    "volume": 2957826400
  },
  {
    "date": 1559347200000,
    "open": 43.9,
    "high": 50.39,
    "low": 42.57,
    "close": 49.48,
    "volume": 2060874800
  },
  {
    "date": 1561939200000,
    "open": 50.79,
    "high": 55.34,
    "low": 49.6,
    "close": 53.26,
    "volume": 1895406800
  },
  {
    "date": 1564617600000,
    "open": 53.47,
    "high": 54.51,
    "low": 48.14,
    "close": 52.19,
    "volume": 2724326400
  },
  {
    "date": 1567296000000,
    "open": 51.61,
    "high": 56.6,
    "low": 51.06,
    "close": 55.99,
    "volume": 2170268400
  },
  {
    "date": 1569888000000,
    "open": 56.27,
    "high": 62.44,
    "low": 53.78,
    "close": 62.19,
    "volume": 2433210800
  },
  {
    "date": 1572566400000,
    "open": 62.38,
    "high": 67.0,
    "low": 62.29,
    "close": 66.81,
    "volume": 1793326000
  },
  {
    "date": 1575158400000,
    "open": 66.82,
    "high": 73.49,
    "low": 64.07,
    "close": 73.41,
    "volume": 2388794800
  },
  {
    "date": 1577836800000,
    "open": 74.06,
    "high": 81.96,
    "low": 73.19,
    "close": 77.38,
    "volume": 2934370400
  },
  {
    "date": 1580515200000,
    "open": 76.07,
    "high": 81.81,
    "low": 64.09,
    "close": 68.34,
    "volume": 3019279200
  },
  {
    "date": 1583020800000,
    "open": 70.57,
    "high": 76.0,
    "low": 53.15,
    "close": 63.57,
    "volume": 6280072400
  },
  {
    "date": 1585699200000,
    "open": 61.62,
    "high": 73.63,
    "low": 59.22,
    "close": 73.45,
    "volume": 3265299200
  },
  {
    "date": 1588291200000,
    "open": 71.56,
    "high": 81.06,
    "low": 71.46,
    "close": 79.49,
    "volume": 2805936000
  },
  {
    "date": 1590969600000,
    "open": 79.44,
    "high": 93.1,
    "low": 79.3,
    "close": 91.2,
    "volume": 3243375600
  },
  {
    "date": 1593561600000,
    "open": 91.28,
    "high": 106.42,
    "low": 89.14,
    "close": 106.26,
    "volume": 3020283200
  },
  {
    "date": 1596240000000,
    "open": 108.2,
    "high": 131.0,
    "low": 107.89,
    "close": 129.04,
    "volume": 4070061100
  },
  {
    "date": 1598918400000,
    "open": 132.76,
    "high": 137.98,
    "low": 103.1,
    "close": 115.81,
    "volume": 3885245100
  },
  {
    "date": 1601510400000,
    "open": 117.64,
    "high": 125.39,
    "low": 107.72,
    "close": 108.86,
    "volume": 2894666500
  },
  {
    "date": 1604188800000,
    "open": 109.11,
    "high": 121.99,
    "low": 107.32,
    "close": 119.05,
    "volume": 2123077300
  },
  {
    "date": 1606780800000,
    "open": 121.01,
    "high": 138.79,
    "low": 120.01,
    "close": 132.69,
    "volume": 2322189600
  },
  {
    "date": 1609459200000,
    "open": 133.52,
    "high": 145.09,
    "low": 126.38,
    "close": 131.96,
    "volume": 2240262000
  },
  {
    "date": 1612137600000,
    "open": 133.75,
    "high": 137.88,
    "low": 118.39,
    "close": 121.26,
    "volume": 1833855600
  },
  {
    "date": 1614556800000,
    "open": 123.75,
    "high": 128.72,
    "low": 116.21,
    "close": 122.15,
    "volume": 2650418200
  },
  {
    "date": 1617235200000,
    "open": 123.66,
    "high": 137.07,
    "low": 122.49,
    "close": 131.46,
    "volume": 1889857500
  },
  {
    "date": 1619827200000,
    "open": 132.04,
    "high": 134.07,
    "low": 122.25,
    "close": 124.61,
    "volume": 1711934900
  },
  {
    "date": 1622505600000,
    "open": 125.08,
    "high": 137.41,
    "low": 123.13,
    "close": 136.96,
    "volume": 1606590000
  },
  {
    "date": 1625097600000,
    "open": 136.6,
    "high": 150.0,
    "low": 135.76,
    "close": 145.86,
    "volume": 1919035100
  },
  {
    "date": 1627776000000,
    "open": 146.36,
    "high": 153.49,
    "low": 144.5,
    "close": 151.83,
    "volume": 1461542800
  },
  {
    "date": 1630454400000,
    "open": 152.83,
    "high": 157.26,
    "low": 141.27,
    "close": 141.5,
    "volume": 1797835100
  },
  {
    "date": 1633046400000,
    "open": 141.9,
    "high": 153.17,
    "low": 138.27,
    "close": 149.8,
    "volume": 1565079200
  },
  {
    "date": 1635724800000,
    "open": 148.99,
    "high": 165.7,
    "low": 147.48,
    "close": 165.3,
    "volume": 1691029000
  },
  {
    "date": 1638316800000,
    "open": 167.48,
    "high": 182.13,
    "low": 157.8,
    "close": 177.57,
    "volume": 2444766700
  },
  {
    "date": 1640995200000,
    "open": 177.83,
    "high": 182.94,
    "low": 154.7,
    "close": 174.78,
    "volume": 2108446000
  },
  {
    "date": 1643673600000,
    "open": 174.01,
    "high": 176.65,
    "low": 152.0,
    "close": 165.12,
    "volume": 1627516300
  },
  {
    "date": 1646092800000,
    "open": 164.7,
    "high": 179.61,
    "low": 150.1,
    "close": 174.61,
    "volume": 2180800100
  },
  {
    "date": 1648771200000,
    "open": 174.03,
    "high": 178.49,
    "low": 155.38,
    "close": 157.65,
    "volume": 1687795600
  },
  {
    "date": 1651363200000,
    "open": 156.71,
    "high": 166.48,
    "low": 132.61,
    "close": 148.84,
    "volume": 2401040300
  },
  {
    "date": 1654041600000,
    "open": 149.9,
    "high": 151.74,
    "low": 129.04,
    "close": 136.72,
    "volume": 1749099800
  },
  {
    "date": 1656633600000,
    "open": 136.04,
    "high": 163.63,
    "low": 135.66,
    "close": 162.51,
    "volume": 1447125400
  },
  {
    "date": 1659312000000,
    "open": 161.01,
    "high": 176.15,
    "low": 157.14,
    "close": 157.22,
    "volume": 1510239600
  },
  {
    "date": 1661990400000,
    "open": 156.64,
    "high": 164.26,
    "low": 138.0,
    "close": 138.2,
    "volume": 2084722800
  },
  {
    "date": 1664582400000,
    "open": 138.21,
    "high": 157.5,
    "low": 134.37,
    "close": 153.34,
    "volume": 1868139700
  },
  {
    "date": 1667260800000,
    "open": 155.08,
    "high": 155.45,
    "low": 134.38,
    "close": 148.03,
    "volume": 1724847700
  },
  {
    "date": 1669852800000,
    "open": 148.21,
    "high": 150.92,
    "low": 125.87,
    "close": 129.93,
    "volume": 1675731200
  },
  {
    "date": 1672531200000,
    "open": 130.28,
    "high": 147.23,
    "low": 124.17,
    "close": 144.29,
    "volume": 1443652500
  },
  {
    "date": 1675209600000,
    "open": 143.97,
    "high": 157.38,
    "low": 141.32,
    "close": 147.41,
    "volume": 1307198900
  },
  {
    "date": 1677628800000,
    "open": 146.83,
    "high": 165.0,
    "low": 143.9,
    "close": 164.9,
    "volume": 1520266600
  },
  {
    "date": 1680307200000,
    "open": 164.27,
    "high": 169.85,
    "low": 159.78,
    "close": 169.68,
    "volume": 969709700
  },
  {
    "date": 1682899200000,
    "open": 169.28,
    "high": 179.35,
    "low": 164.31,
    "close": 177.25,
    "volume": 1275155500
  },
  {
    "date": 1685577600000,
    "open": 177.7,
    "high": 194.48,
    "low": 176.93,
    "close": 193.97,
    "volume": 1297101100
  },
  {
    "date": 1688169600000,
    "open": 193.78,
    "high": 198.23,
    "low": 186.6,
    "close": 196.45,
    "volume": 996066400
  },
  {
    "date": 1690848000000,
    "open": 196.24,
    "high": 196.73,
    "low": 171.96,
    "close": 187.87,
    "volume": 1322439400
  },
  {
    "date": 1693526400000,
    "open": 189.49,
    "high": 189.98,
    "low": 167.62,
    "close": 171.21,
    "volume": 1337586600
  },
  {
    "date": 1696118400000,
    "open": 171.22,
    "high": 182.34,
    "low": 165.67,
    "close": 170.77,
    "volume": 1172719600
  },
  {
    "date": 1698796800000,
    "open": 171.0,
    "high": 192.93,
    "low": 170.12,
    "close": 189.95,
    "volume": 1099586100
  },
  {
    "date": 1701388800000,
    "open": 190.33,
    "high": 199.62,
    "low": 187.45,
    "close": 192.53,
    "volume": 1062774800
  },
  {
    "date": 1704067200000,
    "open": 187.15,
    "high": 196.38,
    "low": 180.17,
    "close": 184.4,
    "volume": 1187219300
  },
  {
    "date": 1706745600000,
    "open": 183.99,
    "high": 191.05,
    "low": 179.25,
    "close": 180.75,
    "volume": 1161627000
  },
  {
    "date": 1709251200000,
    "open": 179.55,
    "high": 180.53,
    "low": 168.49,
    "close": 171.48,
    "volume": 1432782800
  },
  {
    "date": 1711929600000,
    "open": 171.19,
    "high": 171.25,
    "low": 168.23,
    "close": 168.84,
    "volume": 95498800
  },
  {
    "date": 1712016000000,
    "open": 169.06,
    "high": 169.34,
    "low": 168.23,
    "close": 168.84,
    "volume": 47248438
  }
]
from engineai.sdk.dashboard import dashboard
from widgets.table import table_widget
from widgets.timeseries import timeseries_widget

dashboard.Dashboard(
    slug="new_dashboard",
    app_slug="<app-slug>",
    workspace_slug="<workspace-slug>",
    content=[
        table_widget,
        timeseries_widget,
    ],
)

Publish your Dashboard to see all the changes you have made to the timeseries widget:

engineai dashboard publish

Result

To Recap:

  • New Tooltips: The ability to add tooltips at either the series or chart level, providing additional information when interacting with data points.
  • Legend Position: Customization of the legend's position within the widget for visual clarity and understanding.
  • Navigation Toolbar: The addition of a navigation toolbar, enabling you to navigate and explore data more effectively.
  • Period Selector: Utilization of a period selector to dynamically adjust the displayed time period within the chart for data analysis.

Next Steps#

Next, we’ll delve into the different types of widgets and how to link them.